
SUBACTIVE TECHNIQUES FOR GUARANTEEING ROUTING AND
PROTOCOL DEADLOCK FREEDOM IN INTERCONNECTION NETWORKS

A Dissertation
Presented to

The Academic Faculty

By

Mayank Parasar

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Georgia Institute of Technology

Georgia Institute of Technology

August 2020

Copyright © Mayank Parasar 2020

SUBACTIVE TECHNIQUES FOR GUARANTEEING ROUTING AND
PROTOCOL DEADLOCK FREEDOM IN INTERCONNECTION NETWORKS

Approved by:

Dr. Tushar Krishna
School of Electrical and Computer
Engineering
Georgia Institute of Technology

Dr. Hyesoon Kim
School of Computer Science
Georgia Institute of Technology

Dr. Alexandros Daglis
School of Computer Science
Georgia Institute of Technology

Dr. Paul Gratz
Department of Electrical and Com-
puter Engineering
Texas A&M University

Dr. Moinuddin Qureshi
School of Computer Science
Georgia Institute of Technology

Date Approved: July 6, 2020

Remember to look up at the stars and not down at your feet. Try to make sense of what

you see and wonder about what makes the Universe exist. Be curious. And however

difficult life may seem, there is always something you can do and succeed at. It matters

that you don’t just give up.

Stephen Hawking

To my family.

ACKNOWLEDGEMENTS

Back in IIT Kharagpur, India, when I was an undergraduate student, I used to dread

Ph.D. as I viewed it challenging and extraordinary endeavor to accomplish. Whenever

I would see Ph.D. scholars, respectful feelings used to come from within. Fast forward

to today, I am finishing my Ph.D. and this is the last chapter I am adding to my thesis.

Looking back, I think fascination for Ph.D. and exceptional hard-work associated with it,

encouraged me to quit my job at Nvidia and take up this remarkable endeavor. I can tell

you this is by far the best thing that happened to me till date and all of this is because of

wonderful people that I met and got a chance to work with during my Ph.D. journey. It

is because of them that I could finish this journey, and all I can do is to acknowledge how

grateful I am that our path crossed.

I am forever grateful to Dr. Tushar Krishna, my Ph.D. advisor, he has been a guiding

light throughout my Ph.D. journey. It all started with my first class in Advance Computer

Architecture (ECE6100) at Georgia Tech and it was his first-class too that he taught at

Georgia Tech. He shaped me carefully throughout my Ph.D. and meticulously guided me.

He always made himself available whenever I needed his guidance. I will always relish our

discussions on various ideas, some of which culminated into papers and many could not

see the light of the day but there were always learnings. I vividly remember, back when

I was not his Ph.D. student, how at the end of every ICN/NoC (Interconnection Network/

Network-On-Chip) class I would go to him and ask, what if we do . . . ? and he would say

you missed this concept or sometimes he would mention this work is already done. I adore

his ever-encouraging attitude towards work. As I grew senior in my Ph.D. our discussion

became more vibrant and intense. I look forward to working with him in the future!

I would like to extend my heartfelt gratitude to Dr. Paul V. Gratz. He is my collaborator

for all my network deadlock papers and projects; and served on my Ph.D. committee. He

always encourages and challenges me to further push the limits of the idea. His insights on

v

various NoC ideas, we discussed over the years, have been invaluable. He taught me many

valuable insights about NoC varying from fundamental concepts to simulation strategies.

I admire the jovial nature of Dr. Paul and learning from him over the years has been a

privilege.

Through my Ph.D. journey, I got to work with wonderful collaborators. Dr. Natalie En-

right Jerger taught me on improving my presentation talk skills and provided her unbiased

views on many of the research ideas. I relished working with Dr. Joshua San Miguel over

many NoC projects. I admire his insights in poking and finding holes in the idea. Over the

years, discussions with him have helped in building strong fundamentals in Network-On-

Chip.

SEESAW was my first paper on virtual memory in collaboration with Dr. Abhishek

Bhattacharjee. As a fresh Ph.D. student, I learned a lot through this paper, about various

aspects of virtual memory and computer architecture. Many thanks to Dr. Abhishek and

Dr. Tushar for being so patient with me throughout this project. This paper by far has seen

most rejects in my Ph.D. career, this paper taught me the power of perseverance and the

value of the peer-reviewed system.

This paper then became the stepping stone of my internship at AMD research where

I worked on another project on virtual memory. I got to interact and work with industry

veterans; it was truly a remarkable learning experience throughout my Ph.D. career. Learn-

ings I received from my internship at AMD research later shaped the rest of my Ph.D. path.

I like to thank Dr. Arkaparva Basu, Eric Van Tassell, Dr. Michael Wayne LeBeane, and

Sooraj Puthoor for their help and encouragement during the internship.

I would like to extend my sincere thanks to Dr. Alexandros Daglis, interacting with

him on my research, and later on, the thesis draft has improved the quality of many of my

techniques. His insights and suggestions during my Ph.D. defense have been very valuable.

I thank Dr. Hyesoon Kim and Dr. Moin Qureshi for helping me improve presentations of

several of my techniques during the Arch-whisky practice talk at Georgia Tech. They also

vi

served on my Ph.D. committee.

Early in-person feedback on my work by Dr. Timothy M. Pinkston helped me to crit-

ically think about many of the techniques proposed in this thesis. He also suggested to

position some of the proposed techniques for reconfigurability deadlocks; where two rout-

ing algorithms can be independently deadlock-free, while dynamically switching between

them can result in deadlock. I thank Dr. Tim for the feedback and time.

I interacted with late Dr. Sudhakar Yalamanchili on my first day at Georgia Tech in

the capacity of Teaching Assistant (TA) for one of his undergraduate computer architec-

ture courses (ECE-3056). I worked as a TA for him for two semesters before switching to

Research Assistant (RA) with Dr. Tushar Krishna. Back then Georgia Tech used to have

written Ph.D. qualifier examinations in ECE, and we have to pass it before we could for-

mally start the Ph.D. It used to be a daunting challenge, as we were given limited chances.

Dr. Sudhakar made sure that I understand his course well, to do good in the qualifier exam.

He mentored me during those two semesters on various aspects of being a TA. I will miss

him.

I find myself to be fortunate that during my Ph.D. I got to be part of Asha society’s

running team. Back in IIT Kharagpur, I started running 2.2 (road circuit of 2.2 kilometers

in length, popularly known as 2.2) in my senior year, but I was not regular. Over at Georgia

Tech, after clearing my qualifiers and securing a position in Dr. Tushar Krishna’s lab, I

resumed running on treadmills (on and off) until finally, someone recommended me to join

Asha’s running team, which raises funds to help underprivileged women and children, by

taking part in marathons. Through Asha, I came in contact with many friends: Prasoon

Suchandra, Arvind Krishna, Dr. Samarth Brahmbhatt, Diego Vaca, Dr. Chirag Jain, Dr.

Dhwanil Shukla. Learning from them about various running techniques and practice runs

on Saturday mornings proved to be very helpful in improving my overall health. I look

forward to doing practice runs with you all once things get to normal.

Thank you, Dr. Steffen Maass, for your helpful advice. Best wishes to you! I miss

vii

conversing with Dr. Mohan Kumar and Dr. Sanidhya Kashyap in Klaus hallway. Learning

from you about your work is always enriching. Dr. Anosh Daruwalla, thank you for your

help in Ph.D. qualifier preparation. Interacting with you, last summer and fall were very

uplifting. Thank you, Chetan Kale, for your support and encouragement.

I should admit ECE Ph.D. course work can take its toll (+ pressure of maintaining an

excellent GPA). I give it to my friends for the reason for maintaining a 4.0 GPA. Thank

you, Shu-han Hsu, for working together on ECE-6601 (Random Processes) assignments,

going to TA office hours; you kept me motivated to work harder and improve.

Giving presentations and making slides is a skill that gets better with suggestions.

Thank you, Poulami Das, for feedback on many of my talks including Ph.D. proposal

practice talks and valuable suggestions.

Being the part of Synergy group from the beginning, I have got the chance to interact

with every synergy member. I remember the time Hyoukjun and I were the only members

working in Klaus-3305 lab. It used to be mostly empty back then. I am happy to see our

lab growing in size. Congratulations to both of us for graduating in summer-2020!

Thank you, Anand, for all the suggestions on paper drafts and poster drafts over the

years. Your careful suggestions have helped improve the quality of several of my paper

drafts. I first met Eric at a graduate student hosting event, when he came to Georgia Tech

after undergrad from ASU. Thanks Eric, for all the great discussions. I love interacting with

Felix, Saeed, and Yehowshua about best practices in coding. Best wishes to Matthew, as a

new synergy lab member. Thank you, Ankit for all the discussions and words of wisdom.

Best wishes to Geonhwa, and William (Jonghoon); To future synergy lab members I look

forward to interacting with you.

My family has been an enormous source of support throughout my Ph.D. journey.

Thank you very much Jijaji (brother-in-law, Madhur Mayank Sharma) and Didi (elder

sister, Anubha Sharma) for all the valuable advice whenever I needed. Conversing with

you has kept me motivated. I am looking forward to spending more time with my Nephew

viii

(Ikshaan Sharma) and my Niece (Miraya Sharma), your jovial nature has kept us all de-

lighted.

Finally, and most importantly I am deeply, deeply grateful to my parents. You have

been a constant source of guidance throughout my life, all the great qualities you instilled

in me, has made this extraordinary endeavor, Ph.D., possible. Words cannot do justice for

all that you have done for me. Without your unwavering support, encouragement, and love

I would not be where I am today. This dissertation is dedicated to my parents. Here is to

the first Dr. Parasar (Dr. Parashar) in our Family! Cheers!

ix

TABLE OF CONTENTS

Acknowledgments . v

List of Tables . xxi

List of Figures .xxiii

Summary .xxxvii

Chapter 1: Introduction . 1

1.1 Multi-Core Era . 1

1.2 Network-on-Chip . 2

1.3 Deadlocks . 4

1.3.1 Why Deadlocks Matter? . 6

1.3.2 Deadlocks under Consideration . 6

1.4 Dissertation Contribution and Outline . 6

Chapter 2: Background . 9

2.1 Network-on-Chip basics . 9

2.2 Topology . 9

2.2.1 Faulty Topologies . 11

2.2.2 Irregular Topologies . 12

x

2.3 Physical Channel Router and Virtual Channel Router 14

2.4 Input buffered router and output buffered router 15

2.5 Message, Packet, Flit and Phit . 16

2.6 Routing Algorithm . 17

2.6.1 Types of Routing Algorithm . 17

2.6.2 Deterministic Dimension Ordered Routing 17

2.6.3 Oblivious Routing . 18

2.6.4 Adaptive Routing . 18

2.6.5 Routing on Irregular Topologies 19

2.7 Routing Algorithm: Implementation . 21

2.7.1 Source Routing . 22

2.7.2 Node Table Based Routing . 22

2.7.3 Combinational Circuit . 22

2.7.4 Adaptive Routing . 23

2.8 Flow Control . 24

2.8.1 Message-based flow control . 24

2.8.2 Packet-based flow control . 25

2.8.3 Flit-based flow control . 26

2.9 Buffer Management . 28

2.9.1 ON-OFF Signaling . 28

2.9.2 Credit-based signaling . 29

2.10 Virtual Channel Router Microarchitecture 29

2.11 Router Pipeline . 32

xi

2.12 NoC Traffic . 33

2.12.1 Cache Coherence traffic . 33

2.12.2 Coherence Protocols . 34

2.12.3 Protocols Considered in this Thesis 36

2.12.4 Virtual Network (VNets) . 37

2.12.5 Point-to-Point Ordering . 38

2.13 Synthetic traffic . 39

2.14 Message sizes . 39

2.15 Types of Deadlocks . 40

2.15.1 Routing Level Deadlock . 40

2.15.2 Protocol Deadlocks . 41

2.16 Performance Metrics . 42

2.17 Chapter Summary . 43

Chapter 3: Prior Work in Deadlock Freedom . 45

3.1 Routing Deadlock Freedom Techniques 45

3.1.1 Routing Restrictions/Turn Restrictions 45

3.1.2 Resource ordering . 47

3.1.3 Up*/Down* Routing . 49

3.1.4 Escape Virtual Channel (Escape VC) 51

3.1.5 Flow control . 51

3.1.6 Deadlock Recovery . 53

3.1.7 Deflection Routing . 55

xii

3.2 Protocol Deadlock Freedom Techniques 56

3.2.1 Virtual Network . 56

3.2.2 Protocol Deadlock Detection . 57

3.2.3 Bubble coloring . 57

3.3 Taxonomy . 58

3.3.1 Proactive solutions . 58

3.3.2 Reactive solutions . 58

3.3.3 Subactive solutions . 59

3.4 Motivation for subactive deadlock freedom 59

3.4.1 Observation: Deadlocks are Rare 60

3.4.2 Observation: Virtual Networks are Costly 61

3.5 Chapter Summary . 65

Chapter 4: Evaluation Tools . 67

4.1 Tool-1: Irregular Topology Generator (ITG) 69

4.1.1 Introduction: ITG . 69

4.1.2 Connectivity matrix . 70

4.1.3 Upper limit on the number of links that can be removed 71

4.1.4 Condition of converting a N x M mesh into a ring 73

4.1.5 Helper functions . 73

4.2 Tool-2: Routing Table Generator (RTG) 74

4.2.1 Implementation in tool . 74

4.3 Tool-3: DRAGON (Deadlock Detection Infrastructure) 75

xiii

4.3.1 Observation: Routing Deadlock Likelihood with Synthetic Traffic
Pattern . 75

4.3.2 Introduction: DRAGON . 77

4.3.3 Overview . 79

4.3.4 Graph generation . 80

4.3.5 Analysis . 81

4.4 Putting it together: ITG, RTG and DRAGON 82

4.4.1 Results . 84

4.5 Chapter Summary . 85

Chapter 5: Brownian Bubble Router (BBR) . 86

5.1 Brownian Bubble Router . 86

5.2 Key Concept . 89

5.2.1 Walk-through Example of Bubble Movement 89

5.3 Proof of Deadlock Freedom . 89

5.3.1 Bubble Exchange . 91

5.4 Implementation . 94

5.4.1 Bubble Movement Epoch Unit . 94

5.4.2 Credit Management Unit . 95

5.4.3 Bubble Exchange Unit . 96

5.5 Adding BBR over Alternate Router Microarchitectures 97

5.6 Evaluation . 97

5.6.1 Methodology . 97

5.6.2 Correctness . 98

xiv

5.6.3 Performance . 100

5.6.4 Bubble Movement and Bubble Exchange Frequency 101

5.6.5 BBR for Irregular Topologies . 103

5.7 Discussion . 104

5.7.1 Improving BBR using CDG information of the topology 105

5.7.2 Extending BBR for protocol deadlock freedom 105

5.8 Chapter Summary . 105

Chapter 6: Bubble in Irregular Network for Deadlock pUrging (BINDU) 107

6.1 BINDU . 107

6.1.1 Definitions . 110

6.1.2 Basic Idea and Walk-through Example 111

6.2 BINDU Network . 111

6.2.1 Bindu Path . 112

6.2.2 Bindu Movement . 113

6.3 Proof of Deadlock freedom . 113

6.4 Router micro-architecture . 116

6.4.1 Comparison with CBS and BBR 122

6.5 Evaluations . 122

6.5.1 Methodology . 122

6.5.2 Performance . 125

6.5.3 Sensitivity studies . 126

6.5.4 Real application results . 129

xv

6.6 Discussion . 129

6.6.1 Using CDG for bindu-path . 129

6.6.2 BINDU to resolve Protocol level deadlocks 130

6.7 Chapter Summary . 130

Chapter 7: Deadlock Removal for Arbitrary Irregular Networks (DRAIN) . . . 132

7.1 DRAIN . 133

7.1.1 Assumptions and Definitions . 135

7.1.2 Offline Algorithm . 137

7.1.3 Router Microarchitecture . 139

7.2 Correctness Proof of Deadlock Freedom 143

7.2.1 Assumption . 143

7.2.2 Proof of Routing-Level Deadlock Freedom 144

7.2.3 Proof of Protocol-Level Deadlock Freedom 144

7.2.4 Livelock and Starvation Avoidance 145

7.2.5 Walk-Through Example . 146

7.3 Methodology . 147

7.3.1 Workloads . 148

7.4 Evaluation . 149

7.4.1 Area and Power . 149

7.4.2 Performance . 150

7.4.3 Sensitivity Studies . 153

7.5 Discussion . 155

xvi

7.5.1 Packet Latency Histogram . 158

7.6 Chapter Summary . 159

Chapter 8: Synchronized Weaving of Adjacent Packets for Network Deadlock
Resolution(SWAP) . 160

8.1 SWAP Theory . 164

8.2 Definitions . 164

8.3 Assumption . 166

8.4 Proof of Routing Deadlock Freedom . 166

8.5 Proof of Livelock Freedom . 168

8.5.1 SWAP in Arbitrary Topologies . 168

8.6 Swap Implementation . 169

8.6.1 Initiating a Swap . 169

8.7 Selecting the packets to swap . 172

8.7.1 Selecting the swapFwd packet . 172

8.7.2 Selecting the swapBack packet . 173

8.8 Router microarchitecture . 175

8.8.1 SWAP vs. Deflection Routing and SPIN 177

8.9 Evaluation . 177

8.9.1 Methodology . 177

8.9.2 Correctness . 178

8.9.3 Performance . 180

8.9.4 Sensitivity Studies . 185

8.9.5 Overheads . 186

xvii

8.10 Discussion . 187

8.10.1 Providing Routing and Protocol Deadlock Freedom using Directed
SWAPs . 187

8.11 Long Term Impact . 189

8.11.1 Salient features of SWAP . 189

8.11.2 Going beyond Routing Deadlocks 190

8.12 Summarizing SWAP with other subactive techniques 193

8.13 Chapter Summary . 193

Chapter 9: Stochastic Escape Express Channel (SEEC) 195

9.1 Background and Related Work . 198

9.1.1 Flow-Control Optimizations . 198

9.1.2 Deadlock Freedom . 202

9.2 SEEC . 209

9.2.1 Free Flow . 209

9.2.2 Overview . 210

9.2.3 Operation Details . 211

9.2.4 Walk-through Example . 213

9.2.5 Lookaheads . 213

9.3 Proof of Correctness: Deadlock Freedom Proof 214

9.3.1 Applicability of SEEC . 216

9.4 Multi-SEEC (mSEEC) . 216

9.5 Router Microarchitecture . 219

9.6 SEEC across Buffer Management Schemes 220

xviii

9.6.1 SEEC/mSEEC over irregular Topologies 221

9.7 Evaluation . 225

9.7.1 Methodology . 225

9.7.2 Area and Power . 226

9.8 Analysis with Synthetic Traffic . 227

9.8.1 FF vs Regular Packet Distribution 228

9.8.2 SEEC over deadlock-free NoC . 229

9.9 Application results . 231

9.9.1 Impact on Application Tail latency 231

9.10 Discussion . 232

9.10.1 SEEC compared to Express Virtual Channel (EVC) 232

9.10.2 SEEC compared to Token Flow Control (TFC) 233

9.11 Chapter Summary . 235

Chapter 10:Conclusion . 236

10.1 Dissertation Summary . 236

10.1.1 Thesis Statement . 237

10.1.2 Discussion . 238

10.2 Quantitative Comparison of Subactive Techniques 239

10.3 Future Direction . 241

10.3.1 Unified Ejection Queues at End Nodes 241

10.3.2 Quality of Service . 241

10.3.3 Swap Channel . 241

xix

10.3.4 Using NoC buffers as Victim Cache 242

10.3.5 NoC design to support Virtual Memory 243

10.4 Conclusion . 243

Appendix A: Lightweight Emulation of Virtual Channels using Swaps 246

A.1 Introduction . 246

A.2 Background and Related Work . 249

A.2.1 Flow Control Techniques . 249

A.2.2 Buffer Management . 251

A.3 The SwapNoC . 252

A.3.1 Microarchitecture . 252

A.3.2 Swap Policies . 253

A.3.3 Multi-flit Packet Swaps . 255

A.3.4 Comparison to VCs. 256

A.4 Evaluation . 258

A.4.1 Methodology . 258

A.4.2 Critical Path, Area and Power . 259

A.4.3 Performance: Synthetic Traffic . 260

A.4.4 Performance: Full-System PARSEC 261

A.5 Conclusions . 262

References . 271

Vita . 272

xx

LIST OF TABLES

3.1 Comparison of solutions for routing-level and protocol-level deadlock
freedom. 59

4.1 Key Simulation Parameters. 83

5.1 Summary Table of Qualitative Comparison of Deadlock Freedom Mech-
anisms. P: Proactive, R: Reactive. S: Subactive. 87

5.2 Network Configuration. 97

6.1 Summary Table of Qualitative Comparison of Deadlock Freedom Mech-
anisms. P: Proactive, R: Reactive. S: Subactive. 108

6.2 Qualitative Comparisons of CBS, BBR and BINDU 122

6.3 Key Simulation Parameters. 124

7.1 Summary Table of Qualitative Comparison of Deadlock Freedom Mech-
anisms. P: Proactive, R: Reactive. S: Subactive. 133

7.2 Key Simulation Parameters. 148

8.1 Summary Table of Qualitative Comparison of Deadlock Freedom Mech-
anisms. P: Proactive, R: Reactive. S: Subactive. 162

8.2 SWAP Operation Details. 171

8.3 SWAP vs. Deflection Routing . 176

8.4 SWAP vs. SPIN . 177

xxi

8.5 Network Configuration. 179

9.1 Summary Table of Qualitative Comparison of Deadlock Freedom Mech-
anisms. P: Proactive, R: Reactive. S: Subactive. 196

9.2 SEEC/mSEEC contrasted against bypass mechanisms in EVC/TFC and CHIP-
PER/MinBD flow control. 203

9.3 Key Terms in SEEC. 210

9.4 Key Simulation Parameters. 222

10.1 Comparison of prior solutions (proactive and reactive) for routing-
level and protocol-level deadlock freedom with new subactive class of
solutions. The new subactive class of solutions are contribution of the
thesis. 244

A.1 Network Configurations (1-cycle router in each) 258

xxii

LIST OF FIGURES

1.1 The y-axis shows the number of transistors, and x-axis shows the time in
years. To keep churning more performance after Dennard scaling[1], we
see resurgence of parallel applications and number of cores starting from
2005 onwards. 2

1.2 The y-axis shows the number of cores, and x-axis shows the time in years.
Commensurate with Figure 1.1 we observe an increase in the number of
cores, to keep up increasing performance.[5] 3

1.3 Figure shows the 4x4 Mesh topology and zoomed out router micro-architecture
of an on-chip network. 4

1.4 Dining philosopher problem: Each philosopher can only eat if he has two
forks for him. Here we have five philosopher and five forks. All philoso-
phers take their left-hand side fork together and wait on next philosopher to
free their fork in a cyclic manner while holding their own fork. This results
in a deadlock, and no one could eat the meal. This is the philosophy behind
deadlocks! . 5

1.5 Theoretical condition for deadlock . 6

2.1 This Figure is taken from Hennessy and Patterson, 5th Edition, Appendix F. 10

2.2 Common Network-on-Chip Topologies.[5] 11

2.3 Gap between low-load latency and saturation throughput for up*/down*
routing and ideal (shown as a black line at 1). 13

2.4 A regular (mesh) topology and a custom topology for a video object plane
decoder (VOPD)[24] . 14

2.5 Showing difference between Physical Channel and Virtual channel[24] . . . 15

2.6 Composition of a message, packet, flit in an on-chip network[24] 16

xxiii

2.7 DOR illustrates an X-Y route from (0,0) to (2,3) in a mesh, while Oblivi-
ous shows two alternative routes (X-Y and Y-X) between the same source-
destination pair that can be chosen obliviously prior to message transmis-
sion. Adaptive shows a possible adaptive route that branches away from
the X-Y route if congestion is encountered at (1,0) 19

2.8 XY DoR routing . 20

2.9 Adaptive routing example . 20

2.10 Different implementation of routing algorithms[24] 21

2.11 Implementation of XY routing using combination circuit[24] 23

2.12 Circuit-switching example from Core 0 to Core 8, with Core 2 being stalled.
S: Setup flit, A: Acknowledgement flit, D: Data message, T: Tail (dealloca-
tion) flit. Each D represents a message; multiple messages can be sent on a
single circuit before it is deallocated. In cycles 12 and 16, the source node
has no data to send.[24] . 25

2.13 Progress of packet in the network with time in store and forward flow con-
trol[24] . 26

2.14 Progress of packet in the network with time in virtual cut through flow
control.[24] . 26

2.15 ON-OFF vs Credit based signaling[24] . 28

2.16 Buffer turnaround time[24] . 29

2.17 Microarchitecture of a 5-port Mesh Router 30

2.18 Evolution of Router pipeline[24] . 32

2.19 Venn diagram of the M-O-E-S-I states [31] 36

2.20 Configuration of memory system used for Two Level MESI protocol for
full system simulations on gem5 [31] . 37

2.21 Configuration of memory system used for MOESI hammer protocol for full
system simulations on gem5 [31] . 37

2.22 Synthetic traffic pattern[24] . 39

2.23 Routing-level deadlock. 40

xxiv

2.24 Protocol-level deadlock. 41

2.25 Typical Latency injection rate curve of the network. Different traffic pat-
terns/applications will have different saturation throughput based on the
topology, routing algorithm, and flow control, but they all will observe the
same curve pattern. 44

3.1 Figure shows the CDG of a 2x3 Mesh. Cycles presents in the CDG shows
that network is deadlock prone with the routing algorithm used to build this
CDG. 46

3.2 Deadlock Free DoR routing for Mesh . 46

3.3 Deadlock Free Turn Models routing for Mesh 47

3.4 Bring it all together, the figure shows different choices of path that a packet
can take for a given Mesh topology with different routing algorithms 47

3.5 Resources (links) can be assigned weights to realize DoR or Turn Model
routing in Mesh as shown . 48

3.6 Limited path-diversity provided by the up*/down* routing 50

3.7 up*/down* routing can lead to non-minimal path traversal because of its
turn restriction as shown in this topology with given sender(src) and re-
ceiver(dest). 50

3.8 Figure showing escape VC in a 3x3 Mesh. Here Escape VC follows dead-
lock free Turn Model routing (West First), while Normal VC follows ran-
dom (minimal) routing . 52

3.9 Deadlock Freedom with SPIN[41] . 54

3.10 Figure shows minimum number of buffers typically present in a modern
NoC to Routing and Protocol Level Deadlock freedom. Buffers for perfor-
mance are optional, but buffers for deadlock freedom are essential. 56

3.11 Routing-level deadlock and solutions. 60

3.12 Likelihood of routing deadlocks for PARSEC workloads as links are re-
moved from an 8x8 Mesh topology. 62

xxv

3.13 Protocol deadlocks incurred for PARSEC workloads as links are removed
from an 4x4 Mesh topology. ‘Red’ indicates a protocol deadlock while
‘Green’ corresponds to the successful completion of the application. 62

3.14 X-axis presents the Virtual Network id (VNet). Wasted power in virtual
networks for (a) MESI cache coherence protocol and (b) MOESI hammer
cache coherence protocol . 64

3.15 Protocol-level deadlock and solutions. 64

3.16 Pictorial representation of a new Taxonomy of deadlock freedom schemes.
subactive approach introduced in this thesis has favorable traits of both
proactive and reactive solutions, therefore it is shown on the apex of the
deadlock freedom scheme triangle. 65

4.1 End-to-end integration flow diagram of irregular topology generator(section 4.1),
routing table generator(section 4.2) with DRAGON-gem5(section 4.3) . . . 68

4.2 Shows the maximum link removal that can be allowed form the original
Mesh topology while keeping it still connected. 72

4.3 Shows the maximum link removal that can be allowed form the original
Mesh topology while keeping it still connected. 73

4.4 Figure shows the first occurrence of deadlock at lowest injection rate for
different synthetic traffic pattern in 4x4 Mesh with routers configured as:
VC-1, 2, and 4 . 76

4.5 Figure shows the first occurrence of deadlock at lowest injection rate for
different synthetic traffic pattern in 8x8 Mesh with routers configured as:
VC-1, 2, and 4 . 76

4.6 Figure shows the first occurrence of deadlock at lowest injection rate for
different synthetic traffic pattern in 16x16 Mesh with routers configured as:
VC-1, 2, and 4 . 77

4.7 First occurrence of routing deadlock as a function of injection rate and dif-
ferent topology sizes . 78

4.8 First occurrence of routing deadlock as a function of injection rate and dif-
ferent topology sizes . 78

4.9 First occurrence of routing deadlock as a function of injection rate and dif-
ferent topology sizes . 79

xxvi

4.10 Figure shows the source-destination pairs in bit complement traffic pattern
in a 4x4 Mesh with links arrangement considering XY routing. For example,
node-id: 5, 6, 9, and 10 are forming a cycle where each node is one hop
away and is in the center of topology. 80

4.11 Strongly connected component (SCC) analysis done by standard graph al-
gorithms to find the deadlock cycle can give approximate number of dead-
lock rings [61]. 81

4.12 DRAGON graph: Here input port of the routers involved in deadlocks have
different number of VCs. This figure intends to show the working of tool’s
concept with different network configuration. This graph is unique to each
virtual network. Number of arrows coming out from each node represents
the VC count of each input node. 83

4.13 Graph shows the sensitivity of number deadlocks in real application with
respect to number of VCs available per input port. ‘vc-per-vnet-2’ has six
times buffer overhead. 85

5.1 Walkthrough [Left to Right] shows how Brownian bubble movement helps
in breaking deadlock cycles. It allows a deadlocked packet to move to some
other port in its router, and other packets, not part of the deadlock ring, to
acquire its place and eventually leave the router, thus breaking the deadlock
ring. In this example, it takes two bubble movements to break the deadlock. 88

5.2 Bubble-Exchange: Deadlock corner cases can still occur with simple bub-
ble movement technique (subsection 5.2.1). In each column, the first row
shows the deadlock ring with involves 2, 3 and 4 routers respectively; the
second row shows the bubble-exchange state in action, and third row finally
shows the routers state after deadlock is broken. 90

5.3 Figure showing router micro architecture on the left for Brownian Bubble
Router and flow diagram illustrating the order in which Brownian Bubble
Router specific actions are performed on right. Note that Brownian Bubble
Router concept is generic to any underlying topology, hence number of
ports are kept as N for generality of the idea. Here VC stands for virtual
channel. Specific details about each module are discussed in section 5.4.
The area consumed by the router at 28nm is also shown. 91

5.4 Correctness of Brownian Bubble Router. For a fixed number of packets for
the simulation, x-axis shows total packets injected in network per node per
cycle and y axis shows %age of total packets received at the end of simulation. 98

xxvii

5.5 Performance of Brownian Bubble Router technique compared against re-
cently proposed deadlock recovery schemes and well known deadlock avoid-
ance schemes such as escapeVC and WestFirst Routing, proving its supe-
riority. Here x-axis shows total packets injected in network per node per
cycle and y-axis shows the average latency incurred by packets in cycles. . . 99

5.6 Overhead introduced when adding BBR over a baseline deadlock-free XY
routing algorithm. 100

5.7 Bubble Movement Frequency: y-axis shows ratio of buffer reads (or writes)
due to BM over the baseline buffer reads (or writes). BBR-1 shows the
highest BM for bit-reverse compared to other BBR-k; this behavior is op-
posite in uniform random traffic. This shows distribution of BM across
BBR-k is highly traffic dependent. 101

5.8 Bubble-Exchange Frequency: here y-axis shows ratio of buffer reads (or
writes) due to BEs over the baseline buffer reads (or writes) and x-axis
shows the packets injected in the network per node per cycle. We see that
BBR-1 has highest BE over any other BBR-k. 102

5.9 A 4x4 Mesh with a faulty link (shown with X). XY routing can no longer
work. Traditional deadlock avoidance (Spanning Tree) will disable the use
of the grey link to avoid cycles, leading to non-minimal routes. Thus BBR
provides higher saturation throughput. 104

6.1 Examples of Bindu-paths. Each Bindu must go through all input ports of all
routers of the network, at least once. (a) Bindu moving through all ports of
a router before jumping to the next router, (b) Bindu jumping between input
ports of different routers throughout its path, (c) A tree-based Bindu-path
for an irregular topology . 109

6.2 Walkthrough figure showing the BINDU in action. Here deadlock involv-
ing router-0,1,3 and 4 is resolved by intra-router Bindu movement of Bindu-
1 and deadlock involving router-4, 5, 7 and 8 is resolved by inter-router
Bindu movement of Bindu-2. Network state corresponding to each type of
Bindu movement is shown in sub-figure (b) and (c) respectively. 111

6.3 The figure shows: (a) The way Bindu resolves the deadlock when it brings
an empty slot to the deadlock ring. (b) How Bindu resolves the deadlock
when it brings a unblocked packet to the deadlock ring. (c) Bindu resolves
the deadlock by shuffling the packets present within the deadlock ring. The
number inside the packet refers to its destination. 114

xxviii

6.4 Router micro-architecture of BINDU. Additional components over baseline
router are highlighted . 116

6.5 The figure shows irregular topologies, created out of a regular mesh. Faults
in the network are shown as link failures at a random location, distributed
randomly throughout the topology . 117

6.6 Performance of BINDU compared against Deadlock avoidance, Deadlock
recovery and BBR for synthetic traffic: Uniform-Random, Transpose and
Shuffle. Evaluated for vc=2, 64 node irregular topology derived from 8x8
Mesh. 119

6.7 The graph compares the performance of BINDU with num Bindu=1, 32, 64
respectively with Critical Bubble Scheme and BBR. Graphs are for regular
8x8 Torus topology. 120

6.8 Graphs are for Uniform Random and Transpose traffic pattern as number of
Bindus increase from 1 to 64 in 8x8 irregular Mesh topologies with given
fault. Graph shows the effect of low-load latency. We observe that the effect
of number of bubbles on performance, is more for the router with fewer
VCs compared to the router with more VCs per input port. All Bindus in
BINDU are confined to VC-0 of each input port. 121

6.9 Graphs are for Uniform Random and Transpose traffic pattern as number of
Bindus increase from 1 to 64 in 8x8 irregular Mesh topologies with given
fault. Graph shows the effect of saturation throughput. We observe that
with increase in number of Bindus, saturation throughput decreases. Bindu-
64 is similar to BBR . 123

6.10 (a)Sensitivity of saturation throughput with increase in inter-router Bindu
movement period of one Bindu for uniform random traffic. These results
are for irregular 8x8 Mesh with VC=2. (b)Uniform-random traffic, VC=2,
with Fault-1. The graph shows the extra link traversal over the baseline
using minimal deadlock-free routing. Here B-1 P-X means Bindu-1 with
‘X’ as Bindu Movement Period . 126

6.11 Packet latency from real workloads BINDU when compared to other state
of the art schemes. Upper row is for Parsec3.0[33] workloads and lower
row shows result for Ligra[75] workloads 127

6.12 Normalized runtime improvement from real workloads with BINDU when
compared to other state of the art schemes. Upper row is for Parsec3.0[33]
workloads and lower row shows result for Ligra[75] workloads 128

xxix

7.1 Sample outputs of our offline algorithm for (a) an irregular topology and
(b) a regular topology. Each arrow represents a unidirectional link in the
drain path. 138

7.2 DRAIN router microarchitecture. The red modules are unique to DRAIN. . 139

7.3 Step-by-step process of how DRAIN resolves deadlocks. (a) Packets have
routed into two deadlock cycles in a faulty network. (b) During the drain
window, all packets follow the predefined drain path in unison. (c) After
draining for one hop, both deadlocks are broken. 143

7.4 Router area and static power comparison. 149

7.5 Saturation throughput for synthetic traffic patterns with increasing number
of faults in an irregular 8×8 mesh. 150

7.6 Low-load latency for synthetic traffic patterns with increasing number of
faults in an irregular 8×8 mesh. 150

7.7 Packet latency and runtime of LIGRA applications on an 8×8 mesh with 0
and 8 faults. 151

7.8 Packet latency of PARSEC and SPLASH-2 applications on a 4×4 mesh
with 0 and 8 faults. 153

7.9 Low-load latency and saturation throughput of DRAIN as a function of the
epoch, with increasing number of faults. 154

7.10 99th-percentile latency comparison. 155

7.11 Transpose traffic; 8x8 Mesh with 12 link failures, each input port has 4
VCs. Percentage of routed, mis-routed and free buffers present in the topol-
ogy until saturation. 156

7.12 Transpose traffic; 8x8 Mesh with 8 link failures, each input port has 4 VCs.
Percentage of routed, mis-routed and free buffers present in the topology
until saturation. 156

7.13 Transpose traffic; 8x8 Mesh with 4 link failures, each input port has 4 VCs.
Percentage of routed, mis-routed and free buffers present in the topology
until saturation. 157

7.14 Network Packet latency distribution of LIGRA[75] application benchmarks
with regular 4x4 and irregular 16 core topology 158

xxx

8.1 The basic hardware implementation for swapping the content of two Flip
Flops / FIFOs. 163

8.2 Example comparing (a) Deflection, (b) SPIN and (c) SWAP using a 3×2
mesh. The left side of the figure (before dotted line) sets up the same initial
condition of deadlock in the three designs, and the right side demonstrates
how they operate. In deflection routing, the deadlock does not persist as
packets move every cycle. However, the green packet (going to Router
C) and the purple packet (going to Router D) are both misrouted due to
conflicts, and take multiple cycles to be re-routed to their destinations. In
SPIN, if a packet in a specific VC (e.g., at Router A) does not move for a
specified number of cycles, a timeout occurs, and a probe is sent to map
the possible deadlock path. The probe returns after 12 cycles. A move
message synchronizes all routers on the deadlock path to perform a spin.
Once the move returns, the spin is performed, and every packet moves for-
ward one hop. The deadlock still persists, so the timeout, probe, move, and
spin process repeats. In the last step, packet c reaches its destination and
the deadlock is resolved. In SWAP, Router A (at a fixed period), coordi-
nates locally with its neighbor (Router B) and performs a swap: packet d
is backtracked, and packet c moves forward. The deadlock still persists.
Packet c performs another swap, reaches its destination, and the deadlock
is resolved. The corresponding CDG at every step in SWAP is also shown. . 165

8.3 Walk through example of SWAP with corresponding CDG. Each node in
the CDG represents a link (e.g., node ‘AB’ is the link from router-A to
router-B) and each edge represents a packet that wants to turn from the
source link to target link (e.g., ‘AB’ to ‘BC’ represents the pink packet
currently buffered at router-B making a West to South turn). (a) there is a
deadlock between the four packets as seen by the cyclic CDG. A swap is
initiated by router-A between the yellow packet at A with the pink packet
at B. (b) The swap completes. Now the yellow packet (swapFwd) moves to
B and wants to go East, while the pink packet (swapBack) is backtracked
to A. The CDG is acyclic: the deadlock is broken. (c) All packets move
forward via normal operation. 166

8.4 Examples of Deadlocks in Arbitrary Topologies 169

8.5 Example showing that it is possible for both the swapFwd (green) and
swapBack (yellow) packets to make forward progress towards their des-
tinations (B and C respectively) after a swap, due to path diversity in the
underlying topology . 173

xxxi

8.6 SWAP Router Microarchitecture. Features added by SWAP are shaded in
grey. Datapath: bus connecting all input ports to allow a swapBack packet
from the downstream router to get buffered at any input VC, and u-turn
support in the crossbar. Control path: Swap Management Unit controlling
when and what to swap. The blue and red paths show a swapFwd packet
going from South in port to East out port, and a corresponding swapBack
packet entering from East out port and getting buffered in the South in port. 174

8.7 Percentage of received packets when running a fully random routing algo-
rithm. SWAP delivers all packets, irrespective of the traffic pattern. With-
out SWAP all traffic patterns see a sharp drop in delivered packets, due to
deadlocks. The injection rate when deadlocks start depends on the traffic
pattern and number of VCs. 179

8.8 Performance of SWAP-K (K = swapDutyCycle) with different traffic syn-
thetic patterns, across deadlock-freedom techniques in a 8×8 Mesh. Num
VCs=4. Packet Size = Mix of 1 and 4 flits. 180

8.9 Performance of deadlock-free networks over Irregular Topologies. 180

8.10 Effect on throughput as network size increases for Transpose traffic. 181

8.11 Normalized Runtime with Multi-threaded Workloads. 182

8.12 SWAP throughput with Uniform Random and Bit Complement traffic run-
ning with a deadlock free routing algorithm. SWAP provides throughput
benefits, especially at low VC counts, by providing extra path diversity.
With high VC counts, it is no worse than the underlying algorithm. 183

8.13 Relation between number of initiated and successful swaps per cycle, as a
function of SwapDutyCycle for low, medium and high injection rates with
uniform random traffic. The top row is for VC=1 and the bottom for VC=4.
The conditions for unsuccessful (failed) swaps are discussed in Table 8.2. . 184

8.14 Energy (i.e., activity) of links in Deflection, SPIN and SWAP networks
with VC=4 and VC=1, normalized to a west-first routing algorithm which
as purely minimal routing. SWAP’s duty cycle parameter can help limit the
amount of backtracking. 185

8.15 Post Place-and-Route Router Area (28nm TSMC, 1GHz). 186

8.16 swap operation essentially removes one edge and adds another in the run-
time CDG of the network. SWAP can guarantee deadlock freedom by mak-
ing sure cyclic edges in the runtime CDG of the network does not persist. . 188

xxxii

9.1 Routing Deadlock: (a) Packets’ ability to make forward progress is blocked
by other packets. Arrows represent desired movement direction. (b) SEEC
resolves the routing deadlock by allowing FF pkt (pkt-10) to bypass the
buffered pkt (pkt-9) until ejection, creating an empty buffer, breaking the
deadlock. (c) Shows FF-pkt ejecting out of the network. 199

9.2 Protocol Deadlock: All buffers occupied with request packets. Thus, the
response packet is stuck indefinitely. Forward progress is only possible
by consuming the response packet. SEEC allows the response packet to
become FF and reach its destination by bypassing all request packets. . . . 199

9.3 Head-of-line Blocking due to congestion. (a) A packet going “up” is blocked
by packets going “dn” in the Baseline. (b)-(d) SEEC’s FF flow control al-
lows the “up” packet to bypass the congested region to reach its destination. 200

9.4 With SEEC, packets are not stuck indefinitely. FF flow control allows pack-
ets to bypass the congested region. 200

9.5 SEEC’s FF control allows packets to bisect through the congested region to
reach its destination. 200

9.6 SEEC improves throughput by ameliorating the effect of credit round trip
delay and utilizing the otherwise idle-links in the baseline network. 201

9.7 Traditional latency throughput curve. SEEC improves performance by re-
ducing the effect of credit turnaround time due to its novel flow control . . . 201

9.8 In DRAIN [10], each “drain” spins the contents of all buffers in the net-
work. This graph plots the distribution of bubbles (empty slots), routed
packets (moved in productive directions), and mis-routed packets in the
network across all drains for the shuffle traffic pattern. It shows misrouting
increasing as injection rates go up for 8x8 Mesh. 205

9.9 Shuffle traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 1k
cycle as DRIAN epoch. Percentage of misrouted packets is consistently
higher than that of routed packets . 206

9.10 Shuffle traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 4k
cycle as DRIAN epoch. Percentage of misrouted packets is consistently
higher than that of routed packets . 206

xxxiii

9.11 Uniform traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 1k
cycle as DRIAN epoch. Percentage of misrouted packets is consistently
higher than that of routed packets . 207

9.12 Uniform traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 4k
cycle as DRIAN epoch. Percentage of misrouted packets is consistently
higher than that of routed packets . 207

9.13 Step-by-step working of SEEC, (a) Router-8, at its turn, reserves a VC
in its ejection port and inserts a ‘Seeker’ in the network (b) Router-8’s
Seeker, traverse the topology on a predefined path to look for packets to
eject. (c) Seeker finds the packet at router-1, Seeker gets dropped and
this buffered packet now becomes FF-packet (d) After router-8, router-9
repeats the process of reserving a VC in its ejection port (not shown to save
space); sending seeker and ejecting packet bufferlessly (e) After router-9
(last router), router-1 (first router) repeats the process. Destination routers
take part cyclically for ejecting packet. 211

9.14 mSEEC implementation. The columns form “partitions” and the rows are
“groups”. In Phase-0, group-0 sends seekers to each partition. Phase-0’s
NICs send seekers to the routers listed after ’=>’. Dotted lines represent
the seeker path. FF-packet follows the same path in the opposite direction.
No two paths overlap. Thus all FF-packets will simultaneously use minimal
paths without collisions. In phase-1 double-ended arrows have been shown
to convey seeker and FF-packet paths. 218

9.15 SEEC router microarchitecture, all mux signals are set up by the lookahead
signal in advance, this allows seamless traversal of bufferless FF packet. . . 219

9.16 Router area and static power comparison. 222

9.17 Latency curve for different traffic pattern across network sizes. SEEC and
mSEEC out-performs the current state-of-art solutions 223

9.18 Low load latency for Bit Rotation and Transpose, traffic pattern. Topology
of increased size 4×4/8×8/16×16 Mesh. 223

9.19 Saturation Throughput for Bit Rotation and Transpose traffic. Topology of
increased size 4×4/8×8/16×16 Mesh. 224

xxxiv

9.20 Baseline routing algorithm is deadlock free. SEEC provides higher perfor-
mance (higher saturation throughput) when augmented with baseline rout-
ing algorithm. We evaluated it using XY and West First (WF) on a 4×4,
8×8 and 16×16 Mesh. 224

9.21 Average packet latency and normalized runtime (to XY routing) of appli-
cations in a 4×4 mesh using full system configuration with gem5[7] using
MOESI hammer[64] cache coherence protocol. 224

9.22 Experiment done on a regular 4×4 Mesh with different deadlock freedom
schemes. The y-axis is a log scale latency in terms of maximum network
cycles, that a packet has incurred. 225

9.23 Percentage breakdown of FF versus Regular packets for synthetic traffic on
a 8x8 Mesh. 229

9.24 Latency breakdown of FF versus Regular packets for synthetic traffic on a
8x8 Mesh. 230

10.1 Quantitative Comparison of subactive techniques proposed in this thesis for
VC=2 on 8x8 Mesh. 239

10.2 Quantitative Comparison of subactive techniques proposed in this thesis for
VC=4 on 8x8 Mesh. 240

10.3 Co-locating Hierarchical page tables of the process closer to the node where
the process is running can enable virtual address translation during network
traversal. 242

A.1 Wormhole vs. Virtual Channels vs. SwapNoC 247

A.2 Router Area and Power as a function of buffer slots 248

A.3 Performance of Wormhole vs. VC-based Designs. 248

A.4 Swap NoC Microarchitecture. For illustration purposes, we show the swap
for a single flit packet. Presented above is an example of tail swap and
intel swap policies. Suppose the North output port is blocked. tail swap
enables the packet going East at Qtail to swap with the one at Qhead going
North (Step 1). With intel swap, a scan of the queue results first in the flit
at location Qhead+3 (i.e., outport West) getting swapped with Qhead (Step
1), and subsequently, if West is also blocked, this gets swapped with the flit
at Qtail going East. intel swap enables more number of swaps. 250

xxxv

A.5 Performance of SwapNoC with multi-flit packets. 257

A.6 Performance of SwapNoC with single-flit packets. 258

A.7 Normalized Full-System Runtime with PARSEC. 261

xxxvi

SUMMARY

Interconnection networks are the communication backbone for any system. They oc-

cur at various scales: from on-chip networks between processing cores, to supercomputers

between compute nodes, to data centers between high-end servers. One of the most funda-

mental challenges in an interconnection network is that of deadlocks. Deadlocks can be of

two types: routing level deadlocks and protocol level deadlocks. Routing level deadlocks

occur because of cyclic dependency between packets trying to acquire buffers, whereas

protocol level deadlock occurs because the response message is stuck indefinitely behind

the queue of request messages. Both kinds of deadlock render the forward movement of

packets impossible leading to complete system failure.

Prior work either restricts the path that packets take in the network or provisions an extra

set of buffers to resolve routing level deadlocks. For protocol level deadlocks, separate sets

of buffers are reserved at every router for each message class. Naturally, proposed solutions

either restrict the packet movement resulting in lower performance or require higher area

and power.

In this thesis, we propose a new set of efficient techniques for providing both routing

and protocol level deadlock freedom. Our techniques provide periodic forced movement

to the packets in the network, which breaks any cyclic dependency of packets. Breaking

this cyclic dependency results in resolving routing level deadlocks. Moreover, because

of periodic forced movement, the response message is never stuck indefinitely behind the

queue of request messages; therefore, our techniques also resolve protocol level deadlocks.

We use the term ‘subactive’ for these new class of techniques.

xxxvii

CHAPTER 1

INTRODUCTION

The complexity for minimum component costs has increased at a rate of roughly a factor of

two per year... Certainly over the short term this rate can be expected to continue, if not to

increase. Over the longer term, the rate of increase is a bit more uncertain, although there

is no reason to believe it will not remain nearly constant for at least 10 years.

- Gordon E. Moore, Cramming more components onto integrated circuits, Electronics Mag-

azine, 19 April 1965.

Gordon Moore’s observation on the economically viable number of components per

integrated circuit is popularly called Moores Law, and continues till today, well beyond

the 10 years he initially believed it would last. In the semiconductor industry, this law has

become the de facto driver for technological innovation and has led to a sustained doubling

of the number of transistors on a die approximately every 2 years.

1.1 Multi-Core Era

Moores Law coupled with Dennard’s scaling[1], MOSFET dimensions and operating volt-

ages should be scaled by the same factor to keep electric field constant, allowed each tech-

nology generation to produce twice the number of transistors, with each transistor 1.4 ×

faster than previous generation at the same power density within the same area. However,

in early 2000s, Voltage scaling slowed down because chips were already operating close to

threshold voltage physical limit at which transistors turn ON and OFF. The end of voltage

scaling also led to the end of frequency scaling to ensure that chips do not cross the power

wall (100W) and overheat, as power equals capacitance × frequency × voltage-squared.

Because of this, and due to ILP (Instruction Level Parallelism) limitations, it was no longer

possible to get similar performance gains per unit power as before. Instead, computer

1

Figure 1.1: The y-axis shows the number of transistors, and x-axis shows the time in years.
To keep churning more performance after Dennard scaling[1], we see resurgence of parallel
applications and number of cores starting from 2005 onwards.

architects decided to extract performance by multiplying the number of processing cores

on-chip (using the exponentially growing number of transistors from Moores law) and run-

ning them in parallel. This has led to the current wave of Chip Multiprocessors (CMPs) or

Multicores. Figure 1.1 and Figure 1.2 shows how increasing transistor count resulted in a

greater number of cores post Dennard multi-core era.

1.2 Network-on-Chip

As the number of on-chip cores increases, a scalable and high-bandwidth communication

fabric to connect them becomes critically important. As a result, packet- switched on-chip

networks are fast replacing buses and crossbars to emerge as the pervasive communication

fabric in many-core chips. Such on-chip networks have routers at every node, connected

to neighbors via short local on-chip wiring, while multiplexing multiple communication

flows over these interconnects to provide scalability and high bandwidth. This evolution

2

Figure 1.2: The y-axis shows the number of cores, and x-axis shows the time in years.
Commensurate with Figure 1.1 we observe an increase in the number of cores, to keep up
increasing performance.[5]

of interconnection networks as core count increases are clearly illustrated in the choice of

a flat crossbar interconnect connecting all eight cores in the Sun Niagara (2005)[2], four

packet-switched rings in the 9-core IBM Cell (2005)[3], and five packet- switched meshes

in the 64-core Tilera TILE64 (2007)[4].

Figure 1.3 shows a tiled CMP (Chip Multi-Processor), here each tile is shown in a gray

rectangle(tile). Each tile contains a processor core, its private instruction and data cache,

a slice of shared L2 cache and an on-chip router. On chip router is shown in green color

rectangle and its zoomed-out figure is shown on the right. The router shown here is a

virtual channel router. This means there is a single physical channel (or link) over which

packets interleave to next hop router and finally reach their destinations. More about virtual

channel routers and physical channel routers are explained in chapter 2.

On-chip network uses input buffered routers, that is, buffers are present at the input port

of the router to store the incoming packets coming from neighboring routers/core. Buffers

serve following purpose:

3

Figure 1.3: Figure shows the 4x4 Mesh topology and zoomed out router micro-architecture
of an on-chip network.

• They allow packets to be routed minimally to their destination

• If two packets present at different input port (say North and East) want to travel

to south, then only one packet can travel at a given time other packet needs to be

buffered to try again next time

• In the face of congestion at the downstream router, these buffers hold the packet until

congestion clears

Buffers in the network are also important to provide deadlock freedom as explained in later

chapters.

1.3 Deadlocks

A deadlock is a situation in which a set of agents wait indefinitely trying to acquire a set of

resources. From an interconnection network perspective, agents are the network packets,

and resources are the buffers in the network which temporarily store the network packets

as move in the network to reach their destination. The cyclic dependency where network

4

Agents:
Philosophers

Resources:
Forks

Figure 1.4: Dining philosopher problem: Each philosopher can only eat if he has two forks
for him. Here we have five philosopher and five forks. All philosophers take their left-hand
side fork together and wait on next philosopher to free their fork in a cyclic manner while
holding their own fork. This results in a deadlock, and no one could eat the meal. This is
the philosophy behind deadlocks!

packets(agents) are trying to acquire network buffers (resources) results in a deadlock. The

classic pedagogical example of deadlock is the dining philosopher’s problem [6]. Formally,

four conditions must simultaneously hold for agents to be involved in a resource deadlock

in a computer system:

• Mutual Exclusion: Resources can be used only in a mutually exclusive manner.

• Hold and wait: An agent is allowed to hold a resource while waiting for other

resources

• Circular wait: There is a cyclic dependence among the agents waiting for resources

(i.e., A is waiting for resource held by B; B is waiting for a resource held by C; ... ;

Z is waiting for a resource held by A).

• No preemption: An agent holding a resource has to give it up voluntarily.

5

Deadlock: A condition in which a set of agents wait indefinitely
trying to acquire a set of resources

0 1

23

A

BC

D
u

v
w

x

§ Packet A holds buffer u (in 1) and wants
buffer v (in 2)

§ Packet B holds buffer v (in 2) and wants
buffer w (in 3)

§ Packet C holds buffer w (in 3) and wants
buffer x (in 0)

§ Packet D holds buffer x (in 0) and wants
buffer u (in 1)

Figure 1.5: Theoretical condition for deadlock

1.3.1 Why Deadlocks Matter?

It is important at the outset to point out that deadlocks are a correctness issue, not a perfor-

mance issue. Any multiprocessor communications and interactions in a system (e.g., OS

processes in software, coherence messages in the memory system, packets in the intercon-

nection network) need to be deadlock-free by design.

1.3.2 Deadlocks under Consideration

In this proposal, we consider two classes of deadlocks that plague multiprocessor systems.

These are: Routing Level Deadlock and Protocol Level Deadlock. These deadlocks are

explained in detail with figures in chapter 2

Our primary objective in this thesis is to rethink the way we provide deadlock-freedom

in interconnects and communication protocols to decrease the expensive buffering that tra-

ditional deadlock-freedom mechanisms require.

1.4 Dissertation Contribution and Outline

In this thesis we show periodic coordinated packet movement is sufficient to resolve both

routing-level and protocol-level deadlocks in any interconnection network

The rest of the thesis is organized as follows:

6

• Chapter-2 presents relevant background on NoCs and cache coherence protocols. It

explains the deadlocks that we have addressed in this thesis. It also presents our

evaluation methodology and performance metrics

• Chapter-3 talks about prior work done in the field of deadlocks and classify the prior

work under new taxonomy: Proactive, Reactive and subactive. Subactive class of

techniques to resolve deadlocks is the contribution of this thesis

• Chapter-4 talks about tools developed for evaluation of the subactive class of tech-

niques over regular and irregular topology. It also talks about the simulation tool,

integrated with gem5[7], called as DRAGON which finds deadlock cycles in a given

network topology

• Chapter-5 introduces the first subactive technique called as Brownian Bubble Router

(BBR)[8], it provides deadlock freedom moving the packet involved in a deadlock to

other input port within the router. Chapter discusses the changes to baseline router

micro-architecture and performance evaluation

• Chapter-6 discusses next subactive technique: BINDU[9], which is an acronym for

Bubble in Irregular Network for Deadlock pUrging. It proposes to provide deadlock

freedom using one bubble or empty VC which keeps circulating through all the input

ports of the routers in the network. Work further generalize the concept to k-BINDUs

and show the performance impact.

• Chapter-7 discusses next new subactive technique: DRAIN[10]: Deadlock Removal

for Arbitrary Irregular Networks. This work proposes to periodically and temporarily

convert a given topology into a virtual ring and move packets few hops on that virtual

ring. The normal network routing ensues afterwards. Oblivious movement of packets

over virtual ring removes any deadlock if present. Chapter-8 discusses router micro-

architecture and performance of this scheme

7

• Chapter-8 talks about a novel subactive technique: SWAP[11] which stands for Syn-

chronized Weaving of Adjacent Packets for Network Deadlock Resolution. This

works proposes to swap packets among neighboring routers in the network to pro-

vide deadlock freedom. The operation of packet-swap occurs periodically and dis-

tributed throughout the network to provide deadlock freedom. Unlike DRAIN[10],

which globally moves all packets of the network periodically, SWAP[11] proposes

localized oblivious swapping of packets across neighboring routers

• Chapter-9 talks about final subactive technique called as SEEC: Stochastic Escape

Express Channel. It proposes to create direct connection between packets in the

network to their destination routers. SEEC then routes those packets minimally till

destination without buffering them over intermediate routers. Chapter shows a com-

prehensive evaluation of SEEC against prior subactive techniques

• Chapter-10 concludes this thesis and discusses the future research directions

8

CHAPTER 2

BACKGROUND

2.1 Network-on-Chip basics

An on-chip network, as a subset of a broader class of interconnection networks, can be

viewed as a programmable system that facilitates the transporting of data between nodes.

An on-chip network can be viewed as a system because it integrates many components

including channels, buffers, switches and control.

With a small number of nodes, dedicated ad hoc wiring can be used to interconnect

them. However, the use of dedicated wires is problematic as we increase the number of

components on-chip: The amount of wiring required to directly connect every component

will become prohibitive.

This chapter introduces readers to a Network-on-Chip and discusses its components in

sufficient detail for understanding the thesis. Necessary background about both synthetic

traffic and cache coherence protocol traffic used to drive the NoC is also presented.

2.2 Topology

Topologies define the connection and physical layout between nodes in the network. Topol-

ogy has profound impact on the performance of the network, it decides the number of hops

a message has to take to reach its destination router in the network. Number of hops directly

correlate with the latency and energy expended due to data movement in the network.

As topology connects different cores/IPs which have different latency and bandwidth

requirement for example, in an SoC, there are different types of topologies used in the

on-chip network as shown in the Figure 2.2

There are following performance metrics associated with the topology, which helps us

9

Figure 2.1: This Figure is taken from Hennessy and Patterson, 5th Edition, Appendix F.

to compare different topologies and reason about their trade-offs. These metrics are briefly

described below:

• Degree. The degree of a topology refers to the number of links at each node. For

example, a ring topology has degree 2, while torus topology has degree 4 for each

node.

• Bisection bandwidth. The bisection bandwidth is the bandwidth across a cut that

partitions the network into two equal parts

• Diameter. The diameter of the network is the maximum distance between any two

nodes in the topology, where distance is the number of links in the shortest route.

• Hop count. The number of hops a message takes from source to destination, or the

number of links it traverses, defines hop count.

A direct network is one where each terminal node (e.g. a processor core or cache in

a chip multiprocessor) is associated with a router; all routers act as both sources/sinks of

traffic and as switches for traffic from other nodes.

10

Figure 2.2: Common Network-on-Chip Topologies.[5]

Indirect networks connect terminal nodes via one or more intermediate stages of switch

nodes. Only terminal nodes are sources and destinations of traffic, intermediate nodes

simply switch traffic to and from terminal nodes. In this thesis we have assumed direct

network in our evaluations, however, techniques can be extended to indirect network as

well.

2.2.1 Faulty Topologies

As process technologies continue to shrink into the deep sub-micron domain, the break-

down of Dennard Scaling has meant that on-chip current densities are increasing as device

density increases. Thus individual devices and wires are exposed to higher operating tem-

peratures and currents, both of which are known to accelerate their eventual breakdown

by one of a number of wear-out mechanisms, including Bias Temperature Instability [12],

11

Time-Dependent Dielectric Breakdown [13], Hot-Carrier Injection [14] and Electromigra-

tion [15]. In each case, heat and/or current accelerate wear, increasing the odds of indi-

vidual device failure. When put together with increasing device and wire density, the odds

of component failures on-chip are rising dramatically with each process generation. Tradi-

tional techniques, such as adding extra timing guard bands and wire thickening in vulner-

able locations are no longer sufficient to address this growing problem; thus architectural

techniques to deal with wear-out failures during product lifetimes must be developed [16].

These eventual component failures imply the expectation that individual cores and other

components may fail during the lifetime of the product. An individual core or other redun-

dant component failure can be dealt with via detection hardware and associated fail-over

software, allowing continued operation at lower capacity [17]. However, failures of the

interconnect components (e.g. links, routers) can be more challenging. In networks-on-

chip (NoCs), applying routing restrictions is the most common deadlock-freedom mecha-

nism; yet it requires static and regular network topologies. Thus, as links and routers fail,

these routing restrictions may be violated, leading to potential deadlocks. Similarly, for

topologies that are irregular [18] or random [19] by design, traditional deadlock avoidance

techniques that rely on network regularity do not work.

Existing mechanisms to handle router and link wear-out failure [20, 21, 22, 23] re-

quire significant extra hardware to support runtime routing reconfiguration and often create

strong network hot spots due to the need to ensure deadlock avoidance in the newly irreg-

ular network.

2.2.2 Irregular Topologies

MPSoC design may leverage a wide variety of heterogeneous IP blocks; as a result of the

heterogeneity, regular topologies such as a mesh or a torus described above may not be

appropriate. With these heterogeneous cores, a customized topology will often be more

power efficient and deliver better performance than a standard topology.

12

0
0.2
0.4
0.6
0.8
1

1.2

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32
Ga

p	
fr
om

	Id
ea
l

Number	of	Faults

Low-Load	Latency Saturation	Throughput

Figure 2.3: Gap between low-load latency and saturation throughput for up*/down* routing
and ideal (shown as a black line at 1).

Often, communication requirements of MPSoCs are known a priori. Based on these

structured communication patterns, an application characterization graph can be con- structed

to capture the point-to-point communication requirements of the IP blocks. To begin con-

structing the required topology, the number of components, their size and their required

connectivity as dictated by the communication patterns must be determined.

An example of a customized topology for a video object plane decoder is shown in

Figure 2.4. The MPSoC is composed of 12 heterogeneous IP blocks. In Figure 2.4, the de-

sign is mapped to a 3×4 mesh topology requiring 12 routers (R). When specific application

characteristics are taken into account (e.g. not every block needs to communicate directly

with every other block), a custom topology is created (Figure 2.4b). This irregular topology

reduces the number of switches from 12 to 5; by reducing the number of switches and the

links in the topology, significant power and area savings are achieved. Some blocks can be

directly connected without the need for a switch, such as the VLD and run length decoder

units. Finally, the degree of the switches has changed; the mesh in Figure 2.4a requires

a switch with 5 input/output ports (although ports can be trimmed on edge nodes). The 5

input/output ports represent the four cardinal directions: north, south, east and west plus an

Injection/Ejection port. All of these ports require both input and output connections leading

to 5 × 5 crossbars. With a customized topology, not all blocks need both input and output

ports; the largest switch in Figure 2.4b is a 3 × 3 switch. Not every connection between

13

Figure 2.4: A regular (mesh) topology and a custom topology for a video object plane
decoder (VOPD)[24]

links coming into and out of a router is necessary in the customized topology resulting in

smaller switches; connectivity has been limited because full connectivity is not needed by

this specific application.

2.3 Physical Channel Router and Virtual Channel Router

Channel here refers to a conduit or a link which connects two routers/nodes. Physical chan-

nel routers have dedicated physical links connecting individual queue of buffers present at

the input ports of the neighboring routers. Here the crossbar, which connects input port and

output port within the router, is also separate of each buffer queue for a given set of input

ports and output ports. Physical channel router is bigger in area and power because of the

wiring involved in laying out physical channel routers.

Virtual channel routers use a single link connecting two neighboring routers. These

links are time multiplexed by the queues of buffers present at the input port of the router and

input ports and output ports share the common crossbar to transport packets from the input

14

Figure 2.5: Showing difference between Physical Channel and Virtual channel[24]

queues, out of the router via output port. Here virtual channel refers to the individual queue

of the buffers present at the input port of the router. Virtual channel routers are smaller

in size and allow better usage of input port buffers by allowing packets present at one of

queue (VC) of upstream router to occupy different queue at the next hop downstream router.

This step is called VC-allocation. In the router microarchitecture designs proposed in this

thesis, we have assumed baseline to be Virtual Channel routers. Although the techniques

introduced here can be extended to Physical Channel routers.

2.4 Input buffered router and output buffered router

Input buffered router refers to the router micro architecture which buffers the packet at

its input port. These routers may suffer the head-of-line blocking where the packet at the

head of the queue (or VC) is not able to move in the network because of the congestion

at its requested output port, blocking the movement of other enqueued packets. Output

buffered router refers to the router micro architecture where the packets are buffered at the

output port of the router. This router micro architecture is free from head of line blocking,

15

Figure 2.6: Composition of a message, packet, flit in an on-chip network[24]

however, the output put needs to perform enqueue of packets at higher frequency without

over-writing incoming packets within the queue. This is one of the challenges in designing

output buffered routers. Most on-chip router uses input port buffering.

2.5 Message, Packet, Flit and Phit

Different nodes connected in the network talk to each other by sending messages. When

a message is injected into the network, it is first segmented into packets, which are then

divided into fixed length Flits (Flow Control Unit). The packet will consist of a head

flit that contains the destination address, body flits and a tail flit that indicates the end of a

packet. Flits can be further broken down into phits, which are physical units and correspond

to the physical channel width. The breakdown of messages to packets and packets to flits

is depicted in Figure 2.6.

Link bandwidth decides the size of Phit. Usually in on-chip networks there is ample

bandwidth available compared to off-chip network. Therefore, Flit and Phits are same in

on-chip network, link bandwidth is then of the same size as that of Flit size. However, in

16

off-chip networks, channel widths are limited by pin bandwidth; this limitation causes flits

to be broken down into smaller chunks called Phits

2.6 Routing Algorithm

After determining the network topology, the routing algorithm is used to decide what path

a message will take through the network to reach its destination. The goal of the routing

algorithm is to distribute traffic evenly among the paths supplied by the network topol-

ogy, so as to avoid hotspots and minimize contention, thus improving network latency and

throughput. All of these performance goals must be achieved while adhering to tight con-

straints on implementation complexity: routing circuitry can stretch critical path delay and

add to a routers area footprint. While energy overhead of routing circuitry is typically low,

the specific route chosen affects hop count directly, and thus substantially affects energy

consumption.

2.6.1 Types of Routing Algorithm

In this section, we briefly discuss various classes of routing algorithms. Routing algorithms

are generally divided into three classes: deterministic, oblivious and adaptive.

2.6.2 Deterministic Dimension Ordered Routing

While numerous routing algorithms have been proposed, the most commonly used routing

algorithm in on-chip networks is dimension-ordered routing (DOR) due to its simplicity.

Dimension-ordered routing is an example of a deterministic routing algorithm, in which all

messages from node A to B will always traverse the same path. With DOR, a message tra-

verses the network dimension-by-dimension, reaching the ordinate matching its destination

before switching to the next dimension. In a 2-dimensional topology such as the mesh in

Figure 2.7, X-Y dimension-ordered routing sends packets along the X-dimension first, fol-

lowed by the Y-dimension. A packet travelling from (0,0) to (2,3) will first traverse 2 hops

17

along the X-dimension, arriving at (2,0), before traversing 3 hops along the Y-dimension to

its destination.

2.6.3 Oblivious Routing

Another class of routing algorithm are oblivious ones, where messages traverse different

paths from A to B, but the path is selected without regard to network congestion. For in-

stance, a router could randomly choose among alternative paths prior to sending a message.

Figure 2.8 shows an example where messages from (0,0) to (2,3) can be randomly sent

along either the Y-X route or the X-Y route. Deterministic routing is a subset of oblivious

routing.

2.6.4 Adaptive Routing

A more sophisticated routing algorithm can be adaptive, in which the path a message takes

from A to B depends on network traffic situation. For instance, a message can be initially

following the X-Y route and see congestion at (1,0)s east outgoing link. Due to this conges-

tion, the message will instead choose to take the north outgoing link towards the destination

(see Figure 2.7).

Routing algorithms can also be classified as minimal and non-minimal. Minimal rout-

ing algorithms select only paths that require the smallest number of hops between the

source and the destination. Non-minimal routing algorithms allow paths to be selected

that may in- crease the number of hops between the source and destination. In the absence

of congestion, non-minimal routing increases latency and also power consumption as ad-

ditional routers and links are traversed by a message. With congestion, the selection of a

non-minimal route that avoids congested links, may result in lower latency for packets.

Before we get into details on specific deterministic, oblivious and adaptive routing al-

gorithms, we will discuss the potential for deadlock that can occur with a routing algorithm.

18

Figure 2.7: DOR illustrates an X-Y route from (0,0) to (2,3) in a mesh, while Oblivious
shows two alternative routes (X-Y and Y-X) between the same source-destination pair that
can be chosen obliviously prior to message transmission. Adaptive shows a possible adap-
tive route that branches away from the X-Y route if congestion is encountered at (1,0)

2.6.5 Routing on Irregular Topologies

The discussion of routing algorithms in this chapter has assumed a regular topology such

as a torus or a mesh. In the previous chapter, the potential for power and performance

benefits of using irregular topologies for MPSoCs composed of heterogeneous nodes was

explored. Irregular topologies can require special considerations in the development of a

routing algorithm. Common routing implementations for irregular networks rely on source

table routing or node-table routing. Care must be taken when specifying routes so that

deadlock is not induced. Turn model routing may not be feasible if certain connectivity is

removed by the presence of oversized cores in a mesh network, for example.

Up*/Down*[25] routing is a popular deadlock-free routing algorithm for irregular topolo-

gies, that marks each link as either Up or Down, starting from a root node. All flits can

only transition from a Down link to an Up link, but never the opposite, which guarantees

19

deadlock freedom. More details of Up*/Down* routing is present in next chapter sub-

section 3.1.3 where we talk about prior work done in the field of deadlock-freedom in

networks.

Figure 2.8: XY DoR routing

Figure 2.9: Adaptive routing example

Figure 2.9 shows all possible (minimal) routes that a message can take from Node (0,0)

to Node (2,3). There are nine possible paths. An adaptive routing algorithm that leverages

20

only minimal paths could exploit a large degree of path diversity to provide load balancing

and fault tolerance.

Adaptive routing can be restricted to taking minimal routes between the source and

the destination. An alternative option is to employ misrouting, which allows a packet to

be routed in a non-productive direction resulting in non-minimal paths. When misrout-

ing is permitted, livelock becomes a concern. Without mechanisms to guarantee forward

progress, livelock can occur as a packet is continuously misrouted so as to never reach its

destination. We can combat this problem by allowing a maximum number of misroutes

per packet and giving higher priority to packets than have been misrouted a large number

of times. Misrouting increases the hop count but may reduce end-to-end packet latency by

avoiding congestion (queueing delay).

Figure 2.10: Different implementation of routing algorithms[24]

2.7 Routing Algorithm: Implementation

In this section, we discuss various implementation options for routing algorithms. Routing

algorithms can be implemented using look-up tables at either the source nodes or within

each router. Combinational circuitry can be used as an alternative to table-based routing.

Implementations have various trade-offs, and not all routing algorithms can be achieved

with each implementation. Figure 2.10 shows examples for how routing algorithms in each

of the three different classes can be implemented

21

2.7.1 Source Routing

Routing algorithms can be implemented in several ways. First, the route can be embedded

in the packet header at the source, known as source routing. For instance, the X-Y route in

Figure 2.7 can be encoded as < E, E, N, N, N, Eject >, while the Y-X route can be encoded

as < N, N, N, E, E, Eject >. At each hop, the router will read the leftmost direction off the

route header, send the packet towards the specified outgoing link, and strip off the portion

of the header corresponding to the current hop.

2.7.2 Node Table Based Routing

More sophisticated algorithms are realized using routing tables at each hop which store the

outgoing link a packet should take to reach a particular destination. By accessing routing

information at each hop (rather than all at the source), adaptive algorithms can be imple-

mented, and per-hop network congestion information can be leveraged in making decisions.

2.7.3 Combinational Circuit

Alternatively, the message can encode the ordinates of the destination and use comparators

at each router to determine whether to accept (eject) or forward the message. Simple rout-

ing algorithms are typically implemented as combinational circuits within the router due to

the low overhead.

With source routing, the packet must contain space to carry all the bits needed to specify

the entire path. Routing using combinational circuits requires only that the packet carry the

destination identifier. The circuits required to implement the routing algorithm can be quite

simple and executed with very low latency.

By implementing the routing decision in combinational circuits, the algorithm is spe-

cific to one topology and one routing algorithm. The generality and configurability of

table-based strategies are sacrificed. Despite the speed and simplicity of using a circuit

to compute the next hop in the routing path, this computation adds latency to the packet

22

Figure 2.11: Implementation of XY routing using combination circuit[24]

traversal when compared to source-based routing. As with node-routing, the next output

must be determined at each hop in the network.

2.7.4 Adaptive Routing

Adaptive routing algorithms need mechanisms to track network congestion levels and up-

date the route. Route adjustments can be implemented by modifying the header, by employ-

ing combinational circuitry that accepts as input these congestion signals, or by updating

entries in a routing table. Many congestion sensitive mechanisms have been proposed, with

the simplest being tapping into information that is already captured and used by the flow

control protocol, such as buffer occupancy or credits.

The primary benefit of increasing the information available to the routing circuitry is

adaptivity. By improving the routing decision based on network conditions, the network

can achieve higher bandwidth and reduce the congestion latency experienced by packets.

The disadvantage of such an approach is complexity. Additional circuitry is required

for congestion-based routing decisions; this circuitry can increase the latency of a routing

decision and the area of the router. Although the leveraging of information already available

at the router is often done to make routing decisions, increasing the sophistication of the

23

routing decision may require that additional information be communicated from adjacent

routers. This additional communication could increase the network area and energy.

2.8 Flow Control

Flow control governs the allocation of network buffers and links. It determines when

buffers and links are assigned to messages, the granularity at which they are allocated,

and how these resources are shared among the many messages using the network. It is

equivalent to the operation of traffic signals at a junction. The role of an efficient flow con-

trol mechanism is to minimize the latencies at low-loads and maximize the throughput at

high-loads. Both these goals can be achieved by ensuring that network resources (buffers

and links) are not idle when there are flits waiting to use them. While the topology and

routing algorithm fix the theoretical latency and throughput characteristics for a particular

traffic pattern, it is the flow control that determines how close to this theoretical capacity

can the network operate.

Flow control techniques are classified by the granularity at which resource allocation

occurs. We will discuss techniques that operate on message, packet and flit granularities

next.

2.8.1 Message-based flow control

Circuit switching is the technique that operates at message granularity, while communi-

cating between the pair of nodes. A dedicated path is reserved between the communicating

nodes before sending the message. Once path is reserved the packets are sent in the buffer

less manner over the reserved path. The overhead of setting-up the path is ameliorated

with larger message size (comprising of many packets and flits). However, if messages

constitute fewer packets and flits then circuit switching is not preferred.

24

Figure 2.12: Circuit-switching example from Core 0 to Core 8, with Core 2 being stalled.
S: Setup flit, A: Acknowledgement flit, D: Data message, T: Tail (deallocation) flit. Each
D represents a message; multiple messages can be sent on a single circuit before it is
deallocated. In cycles 12 and 16, the source node has no data to send.[24]

2.8.2 Packet-based flow control

Circuit switch flow control allocate resources at message granularity. It is inefficient when

the message size is small. Moreover, the path reserved by circuit switch flow control is not

available to be used by any other flow until its teared down. The next set of flow control

scheme reserves buffer at packet granularity. These are:

Store and Forward

In store-and-forward flow control, each router waits until an entire packet has been re-

ceived, before forwarding it to the next router. The buffer size present at the input port of

each router must be greater than the maximum packet size in the network. Buffer space

and link bandwidth are thus allocated at a packet granularity.

Virtual cut-through

Virtual cut-through improves the per-hop delay experienced by the packet in store-and-

forward flow control by starting the transmission of packet as soon as first flit arrives.

25

Figure 2.13: Progress of packet in the network with time in store and forward flow con-
trol[24]

Virtual cut through does not wait for the whole packet to arrive to begin the transmission,

it cut-through the packet transmission to next router as soon flits of packet arrive.

Figure 2.14: Progress of packet in the network with time in virtual cut through flow con-
trol.[24]

In this thesis we have extensively assumed virtual cut through as the baseline flow

control, in the evaluation of techniques.

2.8.3 Flit-based flow control

Packet based flow control mechanism requires the buffering at each input port to be equal

to or greater than the size of the packet. To reduce this buffering requirement flit-based

flow control mechanisms are introduced.

26

Wormhole

Wormhole flow control is similar to virtual cut through, in that it allows the incoming flit

arrived to cut through to the next router if buffer space available. However, unlike Virtual

Cut through, in wormhole flow control buffers and link bandwidth are allocated at flit level

rather than packet level. This allows relatively small flit buffer to be used at the input port

of each router. A key issue with wormhole flow control is that packets go out serially from

a routers input port, in the order in which they came in, since there is only one FIFO queue

for the physical input channel. If the flit of a packet at the head of the queue gets blocked

due to insufficient buffer space due to congestion at its next router, the packet behind it

also gets blocked even though it might want to use a separate non-congested route. This is

known as head-of-line blocking.

Virtual channel

Virtual Channel (VC) flow control removes the head-of-line blocking problem by associat-

ing separate queues for different flows at a router, rather than queuing them one behind the

other like wormhole routers, even though there is only one physical input/output channel.

A head flit allocates a VC and arbitrates for the output physical channel bandwidth

before it can proceed to the next router. The body and tail flits use the same VC, but still

need to compete for the channel bandwidth with flits in other VCs. A VC is freed once the

tail flit leaves. When a packet in some VC gets blocked, packets behind it can still traverse

the physical channel using other virtual channels, thus solving the head-of-line blocking

problem and enhancing throughput.

Virtual Channel, as we will see in next chapter, can serve dual purpose they provide

higher performance and can provide deadlock freedom. However, virtual channel come at

the cost of higher area/power overhead of the router.

27

2.9 Buffer Management

Network-On-Chip does not allow packets to over-write each other, hence a packet from

one router can only move to the next router when there is guaranteed buffer present for it at

the downstream router. There are two common ways of communicating buffer availability

- on-off and credits.

2.9.1 ON-OFF Signaling

In on-off signaling, the downstream router sets a bit high (low) if the number of free buffers

is above (below) some threshold value. The upstream router sends a flit only if the on-off

bit is high. The threshold value is set by the buffer turnaround time. This is the round-

trip delay (in cycles) for the on-off signal to go to the upstream router, be processed and

be visible to the arbitrating flits. The threshold value guarantees that all flits received in

between the time that the bit is turned low and the upstream router stops sending flits have

a free buffer available. For VC flow control, an on-off bit is required for every VC. On-

off signaling can end up lowering throughput compared to credit-based signaling since the

on-off signal could be low and yet there could be idle buffers at the next router.

Figure 2.15: ON-OFF vs Credit based signaling[24]

28

2.9.2 Credit-based signaling

In credit signaling, each upstream router maintains a count of the number of free buffers

at its adjacent downstream router. It decrements the count each time a flit is sent out.

When a flit leaves the downstream router, it sends a credit bit back to the upstream router

which increments its credit count. For VC flow control, the credit count is maintained on

a per-downstream-VC basis, and the credit signal carries the credit bit, the VCid, and an

additional bit to indicate if the VC is now free or not.

Figure 2.16: Buffer turnaround time[24]

The buffer turnaround time determines the minimum number of VCs and/or buffers-

per-VC to avoid self-throttling of the system. It depends on the wire propagation delay and

the router pipeline depth, as shown in Figure 2.16. The longer the delay, the longer is the

idle time for a free buffer, the lower is the buffer utilization and poorer is the throughput.

2.10 Virtual Channel Router Microarchitecture

Router microarchitecture. A generic router microarchitecture is comprised of the following

components: input buffers, router state, routing logic, allocators, and a crossbar (or switch).

Router functionality is often pipelined to improve throughput. Delay through each router

in the on-chip network is the primary contributor to communication latency. As a result,

29

significant research effort has been spent reducing router pipeline stages and improving

throughput.

Figure 2.17: Microarchitecture of a 5-port Mesh Router

Figure 2.17 shows the microarchitecture of a state-of-the-art NoC router. We show a

5-ported router (for a mesh). Each input port has buffers that are organized into separate

VCs. Buffers are FIFO queues that can be implemented using Flip Flops or register files or

SRAM. Each input port connects to a crossbar switch which provides cycle by cycle non-

blocking connectivity from any input port to any output port. A crossbar is fundamentally

a mux at every output port. Mux-based crossbars are actually implemented by synthesizing

30

muxes at every output port, while matrix crossbars layout the cross- bar as a grid with

switching elements at cross-points. Each input port also houses a route compute unit, an

arbiter for the crossbars input port, and a table tracking the state of each VC. Each output

port has an arbiter for the crossbars output port, and also tracks the free VCs and credits at

the neighboring routers input port. A n : 1 arbiter allows up to n requests for a resource, and

grants it to one of them. Matrix arbiters [26] maintain fairness across cycles and are used

in this thesis. Each flit that goes through a router needs to perform the following actions on

its control-path:

• Router Compute (RC) All head and head tail flits need to compute their output

ports, before they can arbitrate for the crossbar. RC can be performed either by a table

lookup, or simply by combinational logic. The former is used for complex routing

algorithms, while the latter is used for simpler routing schemes like XY which we

assume in most of this thesis. To remove RC from the critical path, we use lookahead

routing[27] where each flit computes the output port at the next router, instead of the

current one so that its output port request is ready as soon as it arrives.

• Switch Allocation (SA) All flits arbitrate for access to the crossbars input and output

ports. For a n×n router with v VCs per input port, Switch Allocation is fundamen-

tally a matching problem between n resources (output links) and n×v contenders

(total VCs in the router). To simplify the allocator design in order for it to be real-

izable at a reasonable clock frequency, we often use a separable allocator [28].The

idea is to first arbitrate among the input VCs at each input port using a v : 1 arbiter

at every input port, and then arbitrate 4 among the input ports using a n : 1 arbiter at

every output port.

• VC Allocation (VA) All flits need a guaranteed VC at the next router before pro-

ceeding. VC Allocation is only performed by head tail and head flits, while body and

tail flits use the same VC as their head. VC Allocation can also be performed in a

31

separable manner [28] like SA. In this thesis, we use a simpler VA scheme proposed

by Kumar et al. [29] which we refer to as VC Select (VS). Each output port maintains

a queue of VC ids corresponding to the free VCs at the neighbors input port. The SA

winner for that output port gets assigned the VCid at the head of the queue, and the

VCid is dequeued. When a VC becomes free at the next router and it sends back a

credit, the VCid is enqueued into the queue. If the free VC queue is empty, then flits

are not allowed to perform SA.

Figure 2.18: Evolution of Router pipeline[24]

Once a flit completes RC, SA and VA, it can proceed to its data-path:

• Switch Traversal (ST) Winners of SA traverse the crossbar in this stage. The select

lines of the crossbar are set by the grant signals of SA.

• Link Traversal (LT) Flits coming out of the crossbar traverse the link to the next

router.

• Buffer Write (BW) Incoming flits are buffered in their VC. While the flit remains

buffered, its control-path (RC, SA and VA) is active

• Buffer Read (BR) Winners of SA are read out of their buffers and sent to the cross-

bar.

2.11 Router Pipeline

Early on-chip router prototypes were modeled similar to off-chip routers. Their pipeline is

shown in Figure 2.18(a). This design has a 5-stage router, i.e., tr = 5. Lookahead routing,

32

which computes the route one hop in advance, shortens the router pipeline by one stage,

as shown in Figure 2.18(b), allowing VA and SA to commence as soon as the route is

read out in the first stage. Speculative VC allocation or VC Select allow VA to occur in

parallel to SA, reducing the pipeline even further to 3-cycles, as shown in Figure 2.18(c).

To this 3-stage baseline router, which is similar to Intels recent 48-core SCC router, recent

research has proposed speculative pre-arbitration of the crossbar to reduce the pipeline to

1-cycle within the router, as shown in Figure 2.18(d). If the pre-arbitration (i.e., VA and

SA) succeeds, the crossbar is setup for the incoming flit to directly traverse it, bypassing the

conventional BW stage. If the pre-arbitration fails, the incoming flit is buffered as before

and continues to arbitrate for the switch and VC.

This design was fabricated as part of this thesis work. It will be referred to as BASE-

LINE (tr=1) throughout the thesis.

2.12 NoC Traffic

In shared memory systems, the on-chip network interconnects the memory subsystem (L1,

L2, directory, memory controller etc). The traffic through the network is thus cache coher-

ence traffic. In addition, we stress test our network with myriad synthetic traffic patterns to

characterize the latency/throughput characteristics. Both these kinds of traffic domains are

described in this section.

2.12.1 Cache Coherence traffic

The role of the cache coherence protocol is to maintain the semantics of one writer or

many readers in parallel programs. While processors perform reads and writes with various

sizes, ranging from 1 to 64 bytes, in practice, coherence is commonly maintained at the

granularity of cache blocks

33

2.12.2 Coherence Protocols

There are two families of cache coherence protocols: snooping and directory-based proto-

col. Snooping and directory protocols Two main classes of coherence protocols are com-

monly in use

• Snooping protocols: In these protocols, cache controllers initiate a block request by

broadcasting it to all other coherence controllers which will process it and reply, if

needed, with data for instance. They rely on the interconnection network to deliver

the messages in a consistent order, and most of them typically assume a total order

obtained via a shared bus. Relaxed buses however exist.

• Directory protocols: In these protocols, cache controllers initiate a block request

by unicasting it to the block home memory controller which looks into its directory

which caches are the current owner or sharers for that block. If the LLC/memory is

the owner, it terminates the transaction by sending data to the requester. Otherwise,

it forwards the request to the owner cache, which completes the transaction.

Snooping protocols are simple, but they do not scale to large numbers of processors

as broadcasting does not scale. Directory protocols are scalable because they unicast, but

many transactions take more time because they require an extra message to be sent when

the home controller is not the owner. In addition, the choice of protocol affects the inter-

connection network as, for instance, classical snooping protocols require total order

In 1986, Sweazey and Smith[30] introduced a five-state MOESI model on which many

coherence protocols nowadays still rely on. These states are formed from combinations of

the previously defined characteristics. The three first main states are:

• M(odified): The block is valid, exclusive, owned, may be dirty, and may be written

or read. The cache has the only valid copy of the block and it is potentially stale at

the memory. The cache is responsible for requests for the block.

34

• S(hared): The block is valid but not exclusive, not dirty, not owned and is read-only.

The other caches may hold valid, read-only copies of the block.

• I(nvalid): The block is invalid. Either the cache does not hold the block, or it holds

a stale copy that it may not read or write.

In addition to this three first states, the MOESI set specifies an O state and a E state, which

are used to optimize certain situations:

• O(wned): The block is valid, owned, and potentially dirty, but not exclusive, and

readonly. It is potentially stale at the memory. The cache is responsible for requests

for the block. The other caches may have a read-only copy but are not owners.

• E(xclusive): The block is valid, owned, exclusive, clean, and read-only. It is up-to-

date at the memory. No other cache has a valid copy of the block.

A Venn diagram of the MOESI states is illustrated in Figure 2.19. All states except I are

valid states. M, O and E are owned states. M and E are exclusive states. M and O are

potentially dirty states. This diagram also shows that the example IV protocol condensed

the MOES states into the V state. The MOESI states are quite common and may be called

differently. However, they are not an exhaustive set. For instance, Intel is known to use

a MESIF set, in which the F(orward) state is similar to the O state except that it is clean.

Therefore, the memory has an up-to-date copy of the block.

In this thesis, we used both snoopy and directory-based cache coherence with gem5

full system simulation for evaluation purpose. Each cache coherence protocol implements

its own set of transactions, which are realized by messages from different message class.

Each message class is allocated its own set of virtual channels at every input port of the

router, called as virtual network. In any cache coherence transaction, there are two types

of messages, non-terminating and terminating. Non-terminating messages are those which

are needed to realize a cache coherence transaction but does not end the transaction for ex-

35

Figure 2.19: Venn diagram of the M-O-E-S-I states [31]

ample request-messages. Terminating messages are those which ends the coherence trans-

action for example response messages.

2.12.3 Protocols Considered in this Thesis

Two main protocols used in this thesis are:

• Two-Level MESI (Figure 2.20)

• AMD MOESI Hammer (Figure 2.21)

Two-Level MESI requires three message classes to implement its cache coherence

transactions, these are request, response and forward. Therefore, there are three virtual

networks for Two-Level MESI cache coherence protocol. AMD MOESI Hammer requires

six message class to implement its cache coherence transaction, therefore it has six virtual

networks. Next we present the memory hierarchy configuration for each cache coherence

protocol used.

36

Figure 2.20: Configuration of memory system used for Two Level MESI protocol for full
system simulations on gem5 [31]

Figure 2.21: Configuration of memory system used for MOESI hammer protocol for full
system simulations on gem5 [31]

We assume a CMP design, with a private L1 per tile, and a shared L2 distributed across

all tiles. Each L2 acts as a home node for part of the address space and holds the directory

state for each cache line.

2.12.4 Virtual Network (VNets)

The series of messages sent by a coherence protocol as part of a coherence transaction fall

within different message classes. For instance, all directory protocols (full-state, partial-

state and no-state) used in this thesis use 4 message classes: request, forward, response and

unblock. Token Coherence, a snoopy protocol, uses 3 message classes: request, response,

37

persistent request.

A potential deadlock can occur in the protocol if a request for a line from a L2 is unable

to enter the network because the L2 it is waiting for a response for a previous request,

while the response is unable to reach the L2 since all queues in the network are full of

such waiting requests. To avoid such deadlocks, protocols require messages from different

message classes to use different set of queues within the network. This is implemented by

using virtual networks (vnets) within the physical network. Virtual Networks are identical

to VCs in terms of their implementation: all vnets have separate buffers but multiplex over

the same physical links. In fact, many works on coherence protocols use the term virtual

channels to refer to virtual networks. However, in this thesis we will strictly adhere to using

the term virtual networks or vnets to refer to protocol level message classes. The number

of vnets is thus fixed by the protocol. Each vnet, on the other hand, can have one or more

VCs within each router, to avoid head-of-line blocking or avoid routing deadlocks. In all

NoC designs considered in this thesis, we will use the same number of VCs within each

vnet.

2.12.5 Point-to-Point Ordering

Certain message classes (and thus their vnets) require point-to-point ordering in the net-

work for functional correctness. This means that two messages injected from the same

source, for the same destination, should be delivered in the order of their issue. We imple-

ment point-to-point ordering for flits within ordered vnets by (i) using deterministic routing,

and (ii) using FIFO/queuing arbiters for SA-i at each router. The first condition guarantees

that two messages from the same source do not use alternate paths to the same destination

as that could result in the older message getting delivered after the newer one if the formers

path has more congestion. The second condition guarantees that flits at a routers input port

leave in the order in which they came in.

In the protocols used in this thesis none of the vnets in protocols have this requirement

38

as there are extra states and logic in the protocols to handle out-of-order messages.

2.13 Synthetic traffic

In all our experiments, we assume all sources inject with a uniform random injection rate

(without bursts), while the destination coordinates depend on the traffic pattern. Table-

2.22 lists some common synthetic traffic patterns used for studying a mesh network, along

with their average hop-counts and theoretical throughput with XY routing. The theoretical

throughput or capacity is the injection rate at which some link(s) in the mesh is (are) send-

ing 1-flit every cycle. This is the best a topology can do, with perfect routing, flow control

and microarchitecture.

Figure 2.22: Synthetic traffic pattern[24]

2.14 Message sizes

We size our network parameters such that control messages (requests/forwards/unblocks)

fit within one single flit, while data responses span multiple flits. For 128-bit flits which

we assume in most of this thesis, unless specified, 64B cache line responses fit in 5 flits.

39

Thus VCs within the request, forward or unblock vnets are 1-flit deep, while VCs within

the response vnet are often more than 1-flit deep

2.15 Types of Deadlocks

Deadlock is a condition which renders the forward movement of packet impossible in the

network, resulting in complete system failure. This thesis addresses two types of deadlocks

that plagues the on-chip network:

• Routing Level Deadlock (Figure 2.23)

• Protocol Level Deadlock (Figure 2.24)

2.15.1 Routing Level Deadlock

Figure 2.23: Routing-level deadlock.

Routing-level deadlocks occur within an interconnection network, when packet flows

form a cyclic dependence. In such a system, the agents are net- work packets (or flits),

while the resources are buffers for channels (i.e. physical links). Figure 2.23 shows an

40

B1 B2

A6

A2 A1

B6

B5

B4
B2

A3 A2

A6

A5

(a) No Deadlock Freedom (b) Proactive Solution: Virtual Networks

DEADLOCK

DiƌecƚoƌǇ can͛ƚ
receive A1 reply,
blocked by B6

request
Replies are
not blocked
by requests

NO
DEADLOCK

A5

A4

B5

B4B3

A3

B3

A4

A1

B6

B1

B3 B6

B2

A6 A3

A2

(c) Subactive Solution: DRAIN

A5

A4

B5

B4NO
DEADLOCK A1

B1

Packets are
periodically
drained to
destination

Figure 2.24: Protocol-level deadlock.

example of a deadlock in an interconnection network. All four conditions hold: buffers

are mutually exclusive among the packets as a buffer can only hold one packet at a time;

each packet holds on to a buffer while waiting for a downstream buffer; there is a cyclic

dependence between buffers; and a packet holding an upstream buffer can only give up

its buffer once it receives a credit from the downstream router (i.e., the downstream buffer

become free).

Reconfigurability Deadlocks

Reconfigurability deadlocks are a kind of routing level deadlocks, reconfigurability-deadlocks

arises because of dynamically changing routing algorithm to achieve higher performance.

Although two individual routing algorithms can themselves be deadlock free, dynamic

switching of routing algorithm can result in a deadlock. This refers to as reconfigurability

deadlock. In reconfigurability deadlock same circular buffer dependency of packets occur

as shown in the figure.

2.15.2 Protocol Deadlocks

Interconnected multiprocessor systems must use some form of communication protocol

(e.g., message passing, cache coherence) to coordinate action among processors and stor-

41

age nodes. Generally, these protocols consist of transactions that must appear to occur

atomically. When implemented, these transactions are broken into multiple messages that

are non-atomic and may interleave with those of other transactions. Since they all interact

on top of the same physical substrate, deadlocks may occur among them. The agents are

messages, and the resources are buffers. Depending on the system, messages can consist of

one or more physical packets and are often broken down into different classes. For exam-

ple, cache coherence protocols in shared memory multiprocessors have a mix of message

classes (e.g., requests, forward, responses, unblocks) based on the communicating entities

(e.g., cache, directory, memory controller) and the state of the requested data (e.g, modified,

shared, invalid).

Protocol deadlock (Figure 2.24) arise due to the amount of physical resources (i.e.,

buffers) being finite. Since all transactions constitute a back-and-forth of messages, there is

an implicit dependence between head of a nodes inbound queue and the tail of its outbound

to continue the transaction. If the outbound buffer is full, the node must wait, stalling

other incoming messages and potentially creating a cyclic dependence between message,

resulting in protocol level deadlock.

2.16 Performance Metrics

We characterize the performance of NoC designs on three metrics.

• Network Latency The target metric that this thesis is aimed at is network latency. the

network latency has a fixed component (router + link delay), a variable component

(contention delay) and a serialization component. The thesis presents microarchi-

tectural optimizations to reduce the fixed component from 1-cycle at every hop to

1-cycle through- out the network.

• Network Throughput We define the saturation throughput of the network as the

injection rate at which the network latency becomes 3× the low- load latency (Fig-

42

ure 2.25). Throughput is a function of link utilization. Inefficient arbitration, buffer

management and routing can lead to links going idle while there is waiting traffic

and/or some links getting over-provisioned, leading to throughput loss. While the

primary goal of this thesis is latency, most flow control techniques presented also

try to push the saturation throughput closer to the theoretical capacity for synthetic

traffic. For full-system traffic across all protocols and designs, we observe pretty

low injection rates so the NoC is not throughput constrained as much as it is latency

constrained. This is in part because our cores are in-order and non-speculative, and

in part because most applications in SPLASH-2[32] and PARSEC[33] have well be-

haved working sets that do not stress the cache subsystem a lot.

• Full-system Runtime The full-system runtime is the runtime of the parallel section

of our benchmarks, and our most important performance metric. A faster network

by itself may not provide any returns if the messages whose delivery was speeded

up are not on the critical path of the computation. In fact, in some cases we observe

faster NoCs result in higher cache miss rates since remote lines get invalidated faster

before they can be used by their local cores. But by the same argument, in some cases

a minor speedup in the network can provide enormous speedups at the full-system

level if certain threads were able to get access to locks faster, or certain requests hit

in remote caches before that line was evicted off-chip, and so on. The thesis thus

uses full-system simulations instead of trace-driven ones

2.17 Chapter Summary

In this chapter we covered a large breadth of topics related to designing and evaluating

Network-on-Chip (NoC). Terms and background introduced here will be useful throughout

this thesis to understand and appreciate different deadlock freedom schemes proposed thus

far in the literature. This chapter lays the foundation of whole of the thesis and based on

43

Figure 2.25: Typical Latency injection rate curve of the network. Different traffic pat-
terns/applications will have different saturation throughput based on the topology, routing
algorithm, and flow control, but they all will observe the same curve pattern.

our knowledge thus far we next we discuss the prior work done in networks to provide

deadlock freedom.

44

CHAPTER 3

PRIOR WORK IN DEADLOCK FREEDOM

Deadlock in network is an age-old problem. This chapter briefly presents some of the

prominent works done in this field, their insights and benefits. This chapter then classify

the earlier work under a new taxonomy of Proactive and Reactive. Later, this chapter

introduces a new category of deadlock freedom technique, called as subactive.

We classify techniques providing routing level deadlock freedom and protocol level

deadlock freedom separately as follows:

3.1 Routing Deadlock Freedom Techniques

3.1.1 Routing Restrictions/Turn Restrictions

The most common technique to avoid deadlocks is to make the Channel Dependency Graph

(CDG) acyclic[34]. Channel Dependency Graph or CDG of the given network is the func-

tion of both the topology and routing algorithm used in the network. Each link in the

topology represents a vertex in the CDG and each edge joining two vertex represents the

turn as allowed by the routing algorithm. If there are cycles present in the CDG of the

network then it is deadlock prone. In essence, an acyclic CDG establishes a total order in

the acquisition of buffer resources by network packets with deadlock freedom guarantee.

For Mesh topology we can make the CDG acyclic using standard routing algorithms

presented below without delving into the complicated CDG analysis.

Dimension Ordered Routing

Dimension order routing such as XY or YX routing for Mesh topology provides deadlock

freedom. It allows packet from source S to destination D to traverse in one dimension, say

45

Figure 3.1: Figure shows the CDG of a 2x3 Mesh. Cycles presents in the CDG shows that
network is deadlock prone with the routing algorithm used to build this CDG.

X, completely before switching to next dimension, say Y, for XY routing. It is applicable

for n-ary k-cube topology and can be extended to 3D NoCs.

Figure 3.2: Deadlock Free DoR routing for Mesh

Turn Model

Turn model routing algorithms are deadlock free routing algorithms that are specific to

Mesh topology. They provide more path diversity than DoR routing such as XY or YX.

Moreover, these algorithms can be made adaptive in order to avoid the region of local

congestion in the network. In Credit based signaling, number of free buffers present at the

downstream router can be used as a measure of congestion in a given direction. Therefore,

whenever there is a choice (as allowed by routing algorithm) of direction, then packet can

choose the direction which has lowest congestion (or maximum number of free buffers

46

at the downstream router). For example, in West-First turn model, if the packet is going

East-North, then it can decide at each hop if it wants to go North, or East based on local

congestion information available.

Figure 3.3: Deadlock Free Turn Models routing for Mesh

Figure 3.4: Bring it all together, the figure shows different choices of path that a packet can
take for a given Mesh topology with different routing algorithms

3.1.2 Resource ordering

To avoid deadlocks to occur Resource ordering technique can be used. Here Links are

resources which can be assigned weights. A packet is allowed to go from its source S, to

its destination D by only acquiring links which have weight greater than or equal to current

47

Figure 3.5: Resources (links) can be assigned weights to realize DoR or Turn Model routing
in Mesh as shown

link acquired by the packet. Resource ordering concept can be used to apply different

routing algorithms as shown in the figure.

In summary, the most common technique to avoid deadlocks is to make the Channel

Dependency Graph (CDG) acyclic. In one variant of this technique, certain turns in a given

topology are not allowed, to ensure that a deadlock is never created. The turn model for

a mesh is the most prevalent implementation. These algorithms allow selective adaptivity

in the routing algorithmfor example, west-first routing only allows adaptivity if the desti-

nation happens to be in the North-East or South-East quadrant of the mesh. An alternate

implementation is to change the virtual channel (VC) at which the packet would sit at

downstream router whenever certain turns are made, to ensure that the VCs themselves do

not form a cyclic dependence. This is used in off-chip networks for algorithms such as

UGAL[35] in dragon-fly networks and require at least three VCs. Fully adaptive routing

can be implemented to allow full path diversity across all VCs, while each VC itself has

turn restrictions[36]. In irregular topologies, arising due to network faults or power-gated

nodes, spanning trees are often used to guarantee the same acyclic CDG behavior.

48

3.1.3 Up*/Down* Routing

The baseline deadlock-free routing solution in an irregular topology is up*/down*[25]

routing. It is based on the turn-restriction model and tags each link in the topology as either

up* or down*. This approach however is expensive not only in implementation because of

extra memory needed in the form of routing table to implement up*/down* routing but also

leads to non-minimal packet traversal in the network.

Theory

The theory behind the up*/down* routing is that in a connected graph, we choose one node

as the root node. Any link that goes towards the root is tagged as up*. That is suppose a

link connects node-A to node-B, if the minimum distance from node-B to the root in terms

of number of hops is less than the distance from node-A to the root, then that link is tagged

as up* link. Similarly, a link that takes packet away from the root is tagged as down* link.

The links (connecting node-A to node-B) which do not change the minimum distance from

either node-A or node-B to the root node can either be tagged as either up* or down*. If

they are in opposite direction then one link will be tagged as up* and another as *down.

up*/down* routing provides deadlock freedom by restricting the order a packet can

traverse the link to reach to its destination. As we have tagged all the links as either up*

or down*, a packet can take following pairs of combinations of one hop link traversals to

reach its destination node:

• up*-up*

• up*-down*

• down*-down*

• down*-up*

A valid (deadlock-free) path in up*/down* routing is the one in which one of the up*-

down* or down*-up* hop traversal is prohibited. The tool prohibits down*-up* order of

49

link traversal. For example, the following order of link traversals are allowed in the tool:

[up*-up*-down*-down*] for a packet to reach its destination node in three hops. In practice

up*/down* routing is implemented using routing table which requires expensive buffer

storage. Each path in the routing table for any pair of src-dest node follows the up*/down*

routing as mentioned above with turn restriction.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

root sender

receiver

dndn

dn

dn

Figure 3.6: Limited path-diversity provided by the up*/down* routing

This makes the network deadlock free as the resulting channel dependency graph is

acyclic. However, up*/down* routing is restrictive in terms of path-diversity as we will see

in the next section.

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

root sender

receiver

dnup
DN->UP not
allowed by

routing
algorithm

upup

dn dn

Figure 3.7: up*/down* routing can lead to non-minimal path traversal because of its turn
restriction as shown in this topology with given sender(src) and receiver(dest).

50

Path diversity

up*/down* routing provides limited path diversity as we see in Figure 3.7 and Figure 3.6.

Here root and sender are the same node and both paths are possible for sender to send

packet to destination. However, in certain cases as shown in Figure 3.7 the senders packet

may have to take the non-minimal path to reach to its destination and path diversity are also

reduced.

3.1.4 Escape Virtual Channel (Escape VC)

Escape Virtual Channel (Figure 3.8) guarantees deadlock freedom for networks with or

without cycles in their CDG as long as there exists a connected sub-graph in the extended

CDG that is acyclic. It splits each physical channel into a set of additional VCs (i.e.,

buffers) to form an escape network. Packets in the regular VCs are routed adaptively while

those in escape VCs get routed using a turn restriction-based deadlock free routing al-

gorithm as explained above. Escape VC can be used for both deadlock- avoidance and

deadlock-recovery.

However, it suffers from (a) energy and area overheads of escape network buffers, and

(b) additional routing tables/logic to support deadlock free routing within the escape VCs.

3.1.5 Flow control

Another technique to provide routing deadlock freedom is to make sure that cyclic depen-

dency of packet does not occur at run time even though CDG could be acyclic. One of the

first work in this direction is Bubble Flow Control[37], the underlying theory is that as long

as there is one bubble or free-VC present in a ring topology, the network is deadlock-free.

Bubble flow control is applicable to ring topologies, there are several implementations of

BFC which apply it to regular topologies such Mesh and Torus and irregular topologies

as well. This technique has been extensively used to provide deadlock freedom for Torus

networks. VCs are divided into two sets: regular/normal and escape, similar to the division

51

Figure 3.8: Figure showing escape VC in a 3x3 Mesh. Here Escape VC follows deadlock
free Turn Model routing (West First), while Normal VC follows random (minimal) routing

used in Escape VC. Fully adaptive routing is used in regular/normal VCs while packets

are routed using Dimension Ordered Routing (DOR) with BFC within the escape VC.

Static Bubble[38] leverages BFC within dynamically changing irregular topology derived

from the mesh topology. Critical Bubble Scheme (CBS) [39] implements global BFC by

marking one packet sized VC in each ring as Critical Bubble. The critical bubble flows

backwards as the packets move forward in the ring. Worm-Bubble Flow Control (Worm-

BFC)[40] extends CBS to wormhole routing. Buffers are colored as grey, white and black

and serve as token for routers ensuring the presence of critical bubble in the ring at all times

thereby preventing starvation and deadlock. Flow-control based schemes suffer from lim-

itations like buffer coloring/token capturing complexity, expensive solutions required for

preventing packet injection starvation particularly for wormhole routing, energy overhead

of circulating the token/buffer color information and lack of guarantees for packet latency

that have prevented their adoption in commercial and academic designs.

52

3.1.6 Deadlock Recovery

Another school of thought for resolving deadlocks stems from the observation that dead-

locks are a rare phenomenon, therefore instead of adding turn restrictions or extra VCs in

the routers to avoid deadlocks, one should detect, locate, and resolve deadlocks. Dead-

lock recovery algorithms allow packets to take all paths provided by the topology to reach

to their destination. However, in doing so, the packets can get deadlocked due to cyclic

CDGs. To recover from it, these techniques require detection via timeouts, location via

probes, and resolution via synchronization messages. Implementing deadlock recovery is

therefore quite complex. Moreover, this technique is not scalable; as network sizes in-

crease, the probability, shape, and length of deadlock-ring also increases, making it even

more difficult to locate them dynamically. There have also been proposals to drop flits in the

network, if they fail to win the switch for a threshold number of tries, thereby breaking any

deadlocks. However, this approach comes with the overhead of tracking and re-transmitting

the dropped flit as NoCs do not tolerate packet/flit losses.

SPIN: Synchronized Progress in Interconnection Networks

SPIN[41] stands for Synchronized Progress in Interconnection Networks. It also proposes

to dynamically detect deadlocks as they occur in the network. SPIN is applicable to both

regular (Mesh, Torus, etc) and irregular topologies. One salient insight of SPIN is that it

views routing deadlocks as a lack of communication/coordination problem rather than as

lack of network buffers problem. It proposes that we do not need extra buffers in the form

of Escape VC or extra free VC in the form of bubble as in Bubble Flow Control, if we can

coordinate between the packets to move synchronously along the deadlock-ring then after

finite spins or packet movement we can resolve the deadlock.

SPIN is a new theory for routing deadlock freedom as it proposes to resolve dead-

locks by coordination of moving packets along the deadlock ring unlike other works in

the domain of deadlock recovery which use mechanisms to eject any one packet out of the

53

deadlock ring via extra buffers to resolve deadlocks.

SPIN uses global coordination to achieve deadlock freedom. This requires extensive

deadlock detection circuitry in hardware to dynamically map and detect deadlock ring via

probes. Probes are sent out after expiration of time-out counters, which tracks the time

elapsed since the packet at the head of the router queue has not moved. Time-out counter

resets as the tracked packet moves out of the router. Each router has a empty buffer which

records the dynamic deadlock cycle detected by probes and instruct the movement of pack-

ets according to the length of deadlock cycle. In the original SPIN paper network topology

was considered to be homogeneous with equal link bandwidth and latency. SPIN idea can

be extended to heterogeneous topology with variable link and/or router delays and link

bandwidth with the help of extra buffering.

The idea of SPIN is explained with the help of a figure below:

Figure 3.9: Deadlock Freedom with SPIN[41]

One of the challenges in SPIN (or other Deadlock Detection) is when link latency be-

comes much more than packet switching latency in a router. This is typically the case in

off-chip networks, then the cost of deadlock detection and/or coordination can become pro-

hibitively expensive. For example, consider link-latency to be 100 cycles and router latency

to be 1 cycle for packet switching. Here we are not considering queuing delay experienced

by packet while buffered at the router. Also considering the deadlock is spanning eight

routers, then it would take num routers involved x router latency + num links involved x

link latency number of cycles. This comes out to be 808 cycles in above scenario just to

detect deadlock, then there would be equal number of additional cycles to coordinate the

54

movement of packets involved in the deadlock.

Moreover, from energy perspective, if link energy is more, then deadlock detection

mechanism tends to be more dynamic energy expensive compared to peer deadlock free-

dom techniques.

3.1.7 Deflection Routing

Deflection routing[42] or Hot-potato[43] routing eliminates routing buffers by requiring

routers to assign every input flit to some output port every cycle. When more than one flit

requests the same output port, only one (chosen according to a priority scheme) is allotted

the output port and the rest are deflected to some other available output port. Each flit

however is assigned a unique output port and is not buffered. This idea, and its variants has

been leveraged by BLESS[42] , MinBD[44] , CHIPPER [45], and others.

Deflection routing is a not a deadlock-freedom theory in itself; its inherent deadlock-

free nature is a result of the observation that for any given router with n output ports, there

will always be some matching of up to n input packets to the n output ports such that packet

movement can be ensured without causing deadlock (though not always forward progress).

Deflection routing, however, suffers from major limitations, including requirement of live-

lock freedom solutions, large reassembly buffers for out of order packet delivery and lack

of guarantees on packet latency. In addition, it offers lower saturation throughput compared

to buffered routing algorithms and higher packet latency and network energy consumption

at high loads due to misrouting [11].

From the discussion above we understand there are different techniques for providing

deadlock freedom. Each technique has its own merits, among many factors which decide

using one technique over other, network topologies play a vital role.

Many of the techniques proposed would work on a given set of topology, for example

XY routing only works in Mesh to provide deadlock freedom. In Torus topology the XY

routing is routing deadlock prone

55

3.2 Protocol Deadlock Freedom Techniques

In this section we discuss briefly the solutions proposed in the literature to provide Protocol

Level deadlock Freedom. Surprisingly protocol level deadlock has not observed same at-

tention as that of routing level deadlock from research community. Some of the prominent

solutions are explained as follows:

Figure 3.10: Figure shows minimum number of buffers typically present in a modern NoC
to Routing and Protocol Level Deadlock freedom. Buffers for performance are optional,
but buffers for deadlock freedom are essential.

3.2.1 Virtual Network

Virtual Network[46] is a straightforward way to provide protocol level deadlock freedom.

Here each message class is allocated its own set of buffers at each input port (including

ejection port) of all the routers of the network. This ensures that response packet is not

stuck indefinitely because all the buffers of the network are occupied by request pack-

ets. However virtual network comes at the higher area and power cost because of buffers.

Moreover, Virtual Network adds extra complexity to the switch arbitration stage of the

router pipeline, which is in the critical path and determines the frequency at which a router

can operate. Therefore, Virtual Networks also impact the performance negatively.

56

Figure 3.10 shows the number of Virtual Channels needed per input port of the router,

both for functional correctness and then providing higher performance.

3.2.2 Protocol Deadlock Detection

Disha[47] is one of the first work in the direction of providing deadlock freedom by detect-

ing deadlocks. However, it was originally proposed for routing level deadlocks. Since then

many variants of Disha have been proposed to provide deadlock freedom for example with

wormhole from control[48].

One such variant of Disha called as mDisha[49] provides message dependent deadlock

freedom (also referred to as Protocol Level Deadlock). mDisha just like its variant is a

deadlock detection and recovery scheme. It dynamically detects the protocol level message

dependence using tokens and then provide deadlock recovery mechanism.

3.2.3 Bubble coloring

Bubble coloring[50] is a protocol level deadlock freedom technique, just like mDisha, it is

applicable to both regular and irregular topologies. It is based on the principle of BFC[37].

It uses bubble for each message class, and converts the topology in a knotted virtual ring

running through all the input port of the network. Since BFC claims that the network is

deadlock free as long as there is one bubble present in the ring, hence packets are routed

non-minimally over the knotted virtual ring created from the topology.

There are escape VC implementation available for bubble coloring at a cost of higher

area and power overhead. This scheme and its variants pay the overhead of tracking the

bubble for each message class, and results in lower performance because of non-minimal

packet traversal.

57

3.3 Taxonomy

We provide a new taxonomy to classify the solutions proposed in the field of network

deadlock freedom as follows

3.3.1 Proactive solutions

Proactive deadlock freedom (Figure 3.11(b), and Figure 3.15(b)) solutions are those which

make sure deadlock does not occur in the network to begin with. In essence proactive

solutions proactively prevent deadlock to occur in the network.

For routing level deadlocks prior techniques that come under this category include turn-

restriction/routing restrictions for example: DoR or Turn model for Mesh, Up*/Down*

routing for irregular topologies, Escape Virtual Channel, Bubble Flow Control and its vari-

ants and Deflection Routing. For protocol level deadlocks freedom proactive solutions

include Virtual Networks, and Bubble Coloring.

3.3.2 Reactive solutions

Reactive solutions (Figure 3.11(c)) argue that network deadlock is a rare phenomenon as

it requires certain ensemble of packets requesting to move in a certain direction so as to

form cyclic packet dependency. Therefore, instead of paying higher area, power and per-

formance overhead of avoiding deadlocks by restricting turns or allocating extra buffers

in the form of escape VC, one to detect and recover from them if they ever happen in the

network. In essence reactive solutions react to a deadlock situation when it arrives.

For routing level deadlocks solutions include Disha[47] and its variants, Static-Bubble[38]

and recently proposed SPIN[41]. For protocol level deadlock freedom solution include

mDisha[49] and its variants.

58

Table 3.1: Comparison of solutions for routing-level and protocol-level deadlock
freedom.

Types of
solutions

High Per-
formance

Low Area
and Power

Low Hard-
ware Com-
plexity

Resolves
Routing-
Level
Deadlock

Resolves
Protocol-
Level
Deadlock

Turn Re-
stric-
tions [51]

Proactive ✗ ✓ ✓ ✓ ✗

Escape
VCs [52]

Proactive ✓ ✗ ✓ ✓ ✗

Virtual Net-
works [53]

Proactive ✓ ✗ ✗ ✓ ✓

SPIN [41] Reactive ✓ ✓ ✗ ✓ ✗

3.3.3 Subactive solutions

Subactive class of solutions (Figure 3.11(d), and Figure 3.15(c)) shows example of new

type of solutions proposed in this thesis. These solutions propose neither to allocate net-

work resources to avoid deadlocks like proactive solutions nor to implement complex cir-

cuitry to detect and recover from the deadlocks. Instead these solutions provide periodic

coordinated packet movement to make sure if there is any deadlock present in the net-

work then it gets cleared away. Next few chapters are dedicated to discussing each of the

subactive approach proposed.

Primary objective of this thesis is to rethink the way we provide deadlock-freedom in

interconnects and communication protocols to decrease the expensive buffering that tradi-

tional deadlock-freedom mechanisms require.

3.4 Motivation for subactive deadlock freedom

Designing routing and protocol deadlock freedom in the face of increasing irregularity (as

failures increase over time) is very challenging. Both proactive and reactive solutions have

fundamental limitations, as listed in Table 3.1. This thesis exploits the insight that dead-

59

(c) Reactive Solution: SPIN

A3 A4

A2

A8 A7

A6

A1

A5 A4 A5

A3

A1

A8

A7

A2

A6

A3 A4

A2

A8 A7

A6

(b) Proactive Solution: Escape VC

NO
DEADLOCK

A1

A5

No Y to X turns in
orange (escape) VC

All turns allowed in green VC

A3 A4

A2

A8 A7

A6

(a) No Deadlock Freedom

A1

A5

DEADLOCK

A4 A5

A3

A1

A8

A7

A2

A6

NO DEADLOCK

(d) Subactive Solution: DRAIN

NO DEADLOCK

Synch via
probes

Figure 3.11: Routing-level deadlock and solutions.

locks very rarely occur in practice. Deadlocks require a specific confluence of packet routes

and timings to actually emerge in a given network. Given the rarity of actual deadlocks,

should designers spend precious runtime power to mitigate this remote possibility? We

believe the answer is no.

3.4.1 Observation: Deadlocks are Rare

To demonstrate the rare and unlikely occurrence of deadlock, we look at both application

workloads and synthetic traffic (Figure 3.12, Figure 3.13). In Figure 3.12, links are removed

randomly from an 8×8 mesh to simulate faulty, irregular topologies. All nodes remain

connected to the network when links are removed. Here the routing algorithm is fully

adaptive and not deadlock-free by design. Each PARSEC [33] workload is run five times

with 1 VC and 4 VCs per virtual network. The grayscale corresponds to the percentage

of runs that result in a deadlock. No deadlocks are observed for the fully functional case

(i.e., 0 links removed). Note that because the routing algorithm is not deadlock-free, even

with no links removed, deadlocks are possible in this network. Only upon removing four

60

links do we begin to encounter deadlocks for canneal, which has the highest injection

rate of these five workloads. A higher injection rate implies that there may be enough

packets in the network at any given moment for a deadlock to emerge. As more links

are removed, deadlocks become more common across several of the workloads; removing

more links increases the likelihood that packets can coincidentally form a cycle on the

remaining links. Note that the presence of additional VCs may delay the onset of deadlock

but is not sufficient to provide deadlock freedom.

Furthermore, previous work [38] has shown that faulty topologies are more deadlock-

prone than fault-free topologies. This is because faulty topologies limit the path diversity,

resulting in higher hop counts in the network. Thus, packets stay longer in the network and

have a higher chance to be involved in a deadlock cycle. This is why deadlocks can occur

at a lower injection rate in faulty topologies.

Takeaway. Even in the absence of any explicit deadlock avoidance or prevention mecha-

nism, the occurrence of deadlocks is quite rare. Thus, we aim to follow the adage of “make

the common case fast”: deadlocks are uncommon but still need to be handled correctly.

We do not want to devote significant hardware resources to such an uncommon case nor do

we want to cripple the performance of the common case of deadlock-free operation by im-

posing routing restrictions on all network packets. We use this insight to guide us towards

a new design: we eventually resolve deadlocks, should they occur, but we achieve this at

very low cost and design complexity while maintaining flexibility.

3.4.2 Observation: Virtual Networks are Costly

Figure 3.14 shows the total power consumed by virtual networks, the de facto solution to

protocol-level deadlock freedom. The number of virtual networks depends on the cache

coherence protocol of the system. In the figure, active power refers to power expended to

transfer a packet through the virtual network, while wasted power refers to power expended

even though no packet was in flight. We observe the vast majority of power consumption

61

1 VC

4 VCs

1 VC

4 VCs

1 VC

4 VCs

1 VC

4 VCs

1 VC

4 VCs

0 1 2 4 8 16 20 24

Blackscholes

Bodytrack

Canneal

F’animate

Swaptions

number of links removed

Deadlock probability
0% 20% 40% 60% 80% 100%

Figure 3.12: Likelihood of routing deadlocks for PARSEC workloads as links are removed
from an 8x8 Mesh topology.

Figure 3.13: Protocol deadlocks incurred for PARSEC workloads as links are removed
from an 4x4 Mesh topology. ‘Red’ indicates a protocol deadlock while ‘Green’ corresponds
to the successful completion of the application.

62

in virtual networks is wasted. Virtual Networks are composed of virtual channels. Here

explain the overhead because of virtual channels. Virtual Channel Overhead. VCs

(Virtual Channel) require significant buffering in the router. VCs not only takes up higher

area but also contibute to higher power consumption in the network. There is also state

overhead associated with each virtual channel. Having higher number of VCs complici-

ates switch arbitration and increases the cretical path delay. This effectively lowers the

frequency at which interconnect can operate. In fact buffers in the router are the major

contributor for area and power. For example, supporting 8 VCs incurs a ~3× increase in

area and ~2× increase in power of the interconnection network. Implementing coherence

between private chaces, in commercial shared memory multiprocessors, requires 5 to 16

virtual (or physical) channels per router port to ensure deadlock-freedom. This is indicated

in the specs frrom commercial chips such as Tilera iMesh[54], Intel QPI[55], and AMD

HyperTransport[56] respectively. These extra VCs are required over already essential exta

VCs to avoid routing level deadlock. Furthermore as the protocols become more complex

due to heterogeneousl processing elements, higher number of VCs will be essential to make

the interconnection network deadlock free, this will excerbate the of deadlock freedom[57,

58].

Takeaway. Despite the wasted power, virtual networks are still needed; otherwise correct

execution is not guaranteed due to protocol-level deadlock. We strive for a solution that

is capable of resolving protocol-level deadlocks simultaneously to resolving routing-level

deadlocks.

This thesis proposes a set of solutions that periodically reconfigures network resources

to recover from potential deadlocks in the network. This thesis introduces the concept of

subactive deadlock freedom: neither avoids nor reacts to deadlocks but rather lets them

happen and eventually cleans them up, as shown in Fig. 3.11d and 3.15c. Solutions pro-

posed guarantee deadlock-free operation without adding any performance restrictions nor

expensive buffers, unlike in proactive solutions. These solutions are the first to employ

63

0

0.0004

0.0008

0.0012

0.0016

0 1 2

Ab
so

lu
te

 P
ow

er
 (m

W
) active power wasted power

(a)

0

0.0005

0.001

0.0015

0 1 2 3 4 5

Ab
so

lu
te

 P
ow

er
 (m

W
)

active power wasted power

(b)

Figure 3.14: X-axis presents the Virtual Network id (VNet). Wasted power in virtual net-
works for (a) MESI cache coherence protocol and (b) MOESI hammer cache coherence
protocol

B1 B2

A6

A2 A1

B6

B5

B4
B2

A3 A2

A6

A5

(a) No Deadlock Freedom (b) Proactive Solution: Virtual Networks

DEADLOCK

DiƌecƚoƌǇ can͛ƚ
receive A1 reply,
blocked by B6

request
Replies are
not blocked
by requests

NO
DEADLOCK

A5

A4

B5

B4B3

A3

B3

A4

A1

B6

B1

B3 B6

B2

A6 A3

A2

(c) Subactive Solution: DRAIN

A5

A4

B5

B4NO
DEADLOCK A1

B1

Packets are
periodically
drained to
destination

Figure 3.15: Protocol-level deadlock and solutions.

64

oblivious deadlock removal; they require no complex detection nor recovery mechanisms,

unlike in reactive solutions. This property makes these solutions unique in its ability to re-

solve both routing and protocol-level deadlocks simultaneously without the need for virtual

networks.

Proactive Reactive

Subactive

Deadlock Freedom
Schemes

Figure 3.16: Pictorial representation of a new Taxonomy of deadlock freedom schemes.
subactive approach introduced in this thesis has favorable traits of both proactive and reac-
tive solutions, therefore it is shown on the apex of the deadlock freedom scheme triangle.

3.5 Chapter Summary

In this chapter we provided the state-of-the-art solutions proposed to provide routing and

protocol level deadlock freedom. We discuss merit, as well as challenges of the solutions

and conditions under which they are applicable (for example regular and/or irregular topol-

ogy).

We provided the motivation to renew the interest to study deadlocks in the interconnec-

tion networks.

We then classify the proposed solutions under a new taxonomy of Proactive, Reactive

and Subactive solutions. The philosophy behind subactive technique can be seen in Fig-

ure 3.16, It shows the three vertices of deadlock freedom scheme-triangle, this represents

three ways to achieve deadlock freedom in network. It further underlines the contribution

65

of this thesis, as it adds a apex vertex in deadlock freedom scheme-triangle to show that it

is an important class of techniques to provide deadlock-freedom.

We briefly explained Subactive solutions which we will discuss in-depth in next few

chapters of this thesis. Next chapter is dedicated to the tools developed to study different

properties of deadlocks in irregular topologies, in conjunction with cycle accurate system

simulator gem5[7].

66

CHAPTER 4

EVALUATION TOOLS

Studying different aspects of on-chip network using simulations, requires knowing the sen-

sitivity of the network under different condition. This helps gain greater insight about the

phenomenon of deadlock and further helped to develop novel solutions presented in this

thesis. This chapter, talks about, various tools developed, their working and how to use

them. The tools are hosted on GitHub page for public use1. There are three tools intro-

duced in this thesis:

• Irregular Topology Generator (ITG): Irregular topology generator takes input from

users and generates random irregular topology of given size. This tool is explained

in section 4.1

• Routing Table Generator (RTG): It generates deadlock free up*/down* routing

table for any valid irregular topology provided. This tool is explained in section 4.2.

All the files generated by ITG and RTG are read by gem5[7] to simulate the network.

• DRAGON: It stands for Deadlock Recognizing Topology Agnostic Network Tool.

DRAGON is a framework integrated within garnet[59] to find the number, shape and

size of routing deadlocks that can form within the network at runtime. The frequency

of determining deadlocks during network simulation is provided by the user as gem5

command-line option. This tool is explained in section 4.3

Let us study these tools in detail as below:

1Irregular topology generator and populates up*/down* routing table: https://github.com/Mayank-
Parasar/topology generator

67

Rows: ‘r’
Cols: ‘c’

links-removed:
‘k’

number of topology
to be generated: ’n’

Topology
Connectivity Matrix

python-
wrapper

up/dn routing table for
corresponding

connectivity matrix

DRAGON gem5

turn-Model escapeVC

Topology
generator

up/dn link
labeling

up/dn
routing

Inputs to ITG

Integration with
DRAGON gem5

First Pass: Graph generation

Second Pass: Eliminate unblocked
nodes (DRAGON graph)

Find shape, size and number of
deadlock cycles

Irregular Topology
Generator

(ITG)

Routing
Table

Generator
(RTG)

Figure 4.1: End-to-end integration flow diagram of irregular topology genera-
tor(section 4.1), routing table generator(section 4.2) with DRAGON-gem5(section 4.3)

68

4.1 Tool-1: Irregular Topology Generator (ITG)

Irregular topologies can arise in the network because of faults and/or power gating of nodes.

In other cases, network is designed with irregular topology because of constrains from

heterogeneous IPs. Few IPs could need low network latency compared to other IPs; this

translates to number of hops a packet needs to reach its destination. Network designed

with such considerations results in an irregular topology. This is frequently observed in

designing network for MPSoC.

Therefore, a tool which can generate irregular topologies becomes important to study

the effect of irregularities of the topology on performance and on other sensitivity analysis.

Since the proposed techniques in this thesis use packet coordinated movement, indepen-

dent of the underlying topology, to provide deadlock freedom, the proposed tool is used

to compare the performance and other sensitivity metrics against prior work in irregular

topologies.

4.1.1 Introduction: ITG

The tool to generate irregular topologies derived from original regular topology was de-

veloped. Although the tool can be augmented to generate adhoc irregular topologies, in

current state it requires a baseline topology to generate irregular topology from. Irregular

topology is generated by removing links randomly from the baseline topology, while still

making sure topology is strongly connected as shown in the Figure 4.3 and Figure 4.2.

Strongly connected means there exists at least one path from any node (source-node) in

the network to any other node (destination-node) after removing the link. Given, of course,

that the baseline topology is strongly connected to begin with. The same path in opposite

direction can be used to reach the original source to original destination. In graph theory

parlance, the term strongly connected is referred to as connected and topology is said to be

a connected graph (not to be confused by complete graph).

69

The irregular topology generated in current state assumes Mesh to be the baseline topol-

ogy. Although the tool can be augmented to consider other types of regular topologies. For

the baseline Mesh, tool assumes that there are two uni-directional links (in opposite direc-

tions) between the connected nodes as per Mesh topology.

This information is readily available in the form of connectvty mtrx data structure. This

data structure needs to be changed to extend the tool to other topologies (example torus,

flattened butterfly, etc). The tool takes the row and column to generate the Mesh and its

associated connectivity matrix.

4.1.2 Connectivity matrix

Connectivity matrix is a matrix in which column-ids represent the source nodes and row-

ids represent the destination-nodes. Therefore, for a N × M Mesh, connectivity matrix

is of size (M × N) × (M × N). Value 0 at given [row][column] index in connectivity

matrix represents that there is no connection between a given source node id - column

and destination node id - row, value 1 at the given [row][column] represents a connection

between the nodes, while value -1 represents both row and column index represents the

same node.

Connectivity matrix is a blueprint for a topology. Because of its generality is can be

used to represent any type of network topology and not necessarily a Mesh. Tool works on

this connectivity matrix to generate different topology and outputs the result in the form of

a new connectivity matrix.

To generate an irregular topology from this given row × column Mesh, we also need

to provide how many links need to be removed from the given N x M mesh. Tool after

taking this input works on the connectivity matrix thus generated to remove the links. By

default, it is assumed that the number provided by the user to remove the links are the pair

unidirectional links, in opposite direction, connecting the two nodes. Therefore, if user

input 2 as number of links to be removed then 2 pairs of unidirectional links will be removed

70

between two randomly chosen src-dst pair nodes. Since tool works at the granularity of

removing pair of unidirectional links between two nodes, from now on the term link will

refer to pair of unidirectional links connecting two nodes in opposite direction. This is of

course in the context of the topology generator tool.

After removing any link, the tool checks if the topology is still strongly connected,

this is done by depth-first-traversal (DFT) of the topology. Starting with any node (node-0

in the tool) if all nodes are visited as per the new connectivity matrix of the topology then

topology is said to strongly connected, otherwise the removed link is re-inserted (this essen-

tially undo the changes done to the connectivity matrix and new src-dest pair is randomly

selected to remove the link between them.

The tool keeps count of how many links have been removed randomly in the topology.

As the number of links becomes same as mentioned by the user, the topology is written

into a file in the form of a new connectivity matrix.

4.1.3 Upper limit on the number of links that can be removed

Given a baseline topology (Mesh (k-ary 2-cube) in our case) there is a limit on number of

links that can be removed while still keeping the topology strongly connected. We derive

this condition for N x M mesh (N rows and M columns) as follows:

The maximum possible number of links that can be removed from a N x M mesh is

obtained when the topology converts into a snake-topology or simply a bus as shown in the

figure.

Maximum number of links that can be removed from the topology is evaluated as fol-

lows:

Number of links present in the snake-topology(Figure 4.2) derived from N ×M mesh :

= (N ×M − 1) (4.1)

71

(a) (b)

Snake topology derived
from original 4x4 Mesh

Snake topology derived
from original 4x4 Mesh

Figure 4.2: Shows the maximum link removal that can be allowed form the original Mesh
topology while keeping it still connected.

Total links in the original N ×M mesh :

[2×N ×M − (N +M)] (4.2)

Maximum number of links that can be removed from N x M mesh such that the resultant

topology is strongly connected:

(total links in N ×M mesh)− (total links in snake topology derived from N ×M mesh)

= N ×M − (N +M) + 1

(4.3)

Implicit check is present in the tool, that outputs only strongly connected topology,

after removing the specified number of links. In case the user input is more than maximum

number of links that can be removed, then tool will not output any new topology.

Since the tool removes links from the topology randomly, a user can also specify the

number of topologies he/she would like the tool to generate with a fixed number of links

removed (as faults). The tool will generate that many connectivity matrices.

72

4.1.4 Condition of converting a N x M mesh into a ring

It is possible to convert a N x M mesh into a single ring, by continuously removing links.

(a)
Original 4x4 Mesh

(b)
Converted into a Ring

Figure 4.3: Shows the maximum link removal that can be allowed form the original Mesh
topology while keeping it still connected.

However not all N × M mesh can be converted to a ring by link removal. If both N

and M are odd then there is no single ring possible that connects all the input nodes, for

example 3× 5 Mesh.

If either N or M is even then there’s a ring possible that connects all the node.

Currently this feature of deriving a ring topology from NxM mesh is not implemented in

the tool, however the tool can be extended to generate one, by utilizing characteristic of

‘connectivity matrix’ associated with ring topology derived from N ×M mesh.

4.1.5 Helper functions

To help debugging any changes and to understand the working of the code there are helper

functions provided in the code, namely:

• print matrix() : For printing topologys connectivity matrix

• print char matrix() : For printing up-down routing matrix

• prnt state() : For printing topology information (rows, columns, links removed,

connectivity matrix)

73

The summary of functions are present in generate topology.cc file above the definition of

the functions.

4.2 Tool-2: Routing Table Generator (RTG)

This tool generates deadlock free UP*/DOWN* routing table for a given topology provided

by ITG. UP*/DOWN* routing has been explained in subsection 3.1.3. The up*/down* rout-

ing information is augmented in the same file containing the connectivity matrix of newly

generated irregular topology using ITG. Next subsection describes the implementation of

up*/down* routing in the tool.

4.2.1 Implementation in tool

In the RTG tool, node-0 (row-id: 0, column-id:0) of the topology is assumed to be the

‘root’ node. With this assumption tool first populates the UP/DOWN matrix. It is similar to

connectivity matrix, but now tags each link present in the new topology (as per connectivity

matrix) as either u (stands for UP) or d (stands for DOWN). The corollary of using node-0

as the root node in the topology is that the UP/DOWN matrix thus generated would have

‘d’/down* links in the upper right triangle and ‘u’/up* links in the lower left triangle of the

UP/DOWN matrix it generates. legal path is calculated as per the turn restriction mentioned

in subsection 3.1.3 between every possible src-destination node pair. The routing algorithm

used restricts down* to up* turn. This forms the up/down routing table.

All of this information is populated in a text file generated by this tool, which is later

fed into gem5[7] to configure the garnet2.0[59] routing table to be used to implement

up*/down* routing and Escape VC up*/down* routing in network simulation. gem5’s

python scripts are modified to read the topology file and configure the network’s topology

accordingly at the starting of simulation. Garnet2.0’s C++ code is changed to allow routers

to populate their routing table after reading from the same file. Correctness of the algorithm

is checked by injecting fixed number of packets and making sure all packets are received

74

by the end of the simulation at different injection rate, traffic patterns[60] and topologies

respectively.

4.3 Tool-3: DRAGON (Deadlock Detection Infrastructure)

We quantified the probability of deadlock occurrence as a measure of lowest injection rate

at which first deadlock occurs in the network. Lower the injection rate of first deadlock oc-

currence implies that given topology and traffic patterns are more susceptible to deadlock.

We quantify our observation in subsection 4.3.1.

4.3.1 Observation: Routing Deadlock Likelihood with Synthetic Traffic Pattern

We evaluated the likelihood of deadlocks for synthetic traffic patterns, under different net-

work and router configurations and plotted the lowest injection rate at which the deadlock

in the topology manifests. We used Mesh topology of different sizes (from 16 nodes (4x4

Mesh) to 256 nodes (16x16 Mesh)) and used random routing algorithm which routes pack-

ets minimally to their destination without any turn restrictions.

As shown in Figure 4.4, Figure 4.5, and Figure 4.6, we observe that as topology size ion

increases deadlock manifests at comparably low injection rate. This is an important obser-

vation in the light of Moore’s law, which says transistors per unit area of chip would keep

doubling in every 18 months. One affect of increase in transistors is incorporation of more

and more IPs/Cores within the chip. This would translate to higher nodes in the network.

This observation calls for renewal of interest in the field of deadlocks in interconnection

domain.

Figure 4.4, Figure 4.5, and Figure 4.6 shows deadlock for a given topology across

different traffic patterns. We observe that transpose traffic pattern never deadlocks at any

injection rate and with any topology size. This is attributed to the packets in tranpose traffic

patterns never acquire the input port that results in a deadlock. This is attributed to src-dst

pairs and no u-turns/non-minimal paths allowed in the network.

75

Figure 4.4: Figure shows the first occurrence of deadlock at lowest injection rate for differ-
ent synthetic traffic pattern in 4x4 Mesh with routers configured as: VC-1, 2, and 4

Figure 4.5: Figure shows the first occurrence of deadlock at lowest injection rate for differ-
ent synthetic traffic pattern in 8x8 Mesh with routers configured as: VC-1, 2, and 4

In Figure 4.7, Figure 4.8, and Figure 4.9 we characterized the sensitivity of each traffic

pattern for deadlock with respect to different router configurations and topology size.

We observed the routers with more number of VCs per input port deadlocks later com-

pared to routers configured with less number of VCs per input port. This is attributed to

the buffer turn-around time. We use credit signaling (subsection 2.9.2) to communicate the

buffer occupancy among the neighboring routers.

Lesser number of VCs per input port implies packet would be buffered longer at the

router before making forward progress. This increases overall time a packet spend in

76

Figure 4.6: Figure shows the first occurrence of deadlock at lowest injection rate for dif-
ferent synthetic traffic pattern in 16x16 Mesh with routers configured as: VC-1, 2, and
4

traversing the network and hence the packets, in general, are more susceptible to dead-

lock under random routing. With more number of VCs the packet at one VC at upstream

router can jump to different VC at downstream router if the VC is free, resulting in reduc-

tion of overall time packet spend in the network. Moreover, for deadlock to occur all VCs

of the deadlocked input ports of concerned routers must be occupied in a cyclic fashion.

This probability reduces as number of VCs per input port increases.

We also observed that bit-complement traffic deadlocks at lowest injection rate among

all traffic patterns. This can be attributed to the src-dest node pairs used in this traffic

pattern. Figure 4.10 further shows the source destination pairs for bit-complement traffic

pattern when it is mapped on a 4x4 Mesh topology. The cycles in its source destination

pairs results in a cyclic dependency (when ran with random routing), this results in dead-

lock. Since transpose traffic never deadlocks we did not perform its sensitivity study.

4.3.2 Introduction: DRAGON

To understand the nature of routing deadlocks, their frequency and likelihood in real ap-

plications and under different network configurations a deadlock detection infrastructure

inside Garnet2.0[59] was designed and integrated it to the gem[7] simulator.

77

(a) Bit Complement (b) Bit Reverse

Figure 4.7: First occurrence of routing deadlock as a function of injection rate and different
topology sizes

(a) Bit Rotation (b) Shuffle

Figure 4.8: First occurrence of routing deadlock as a function of injection rate and different
topology sizes

This tool gives us a deeper understanding of cyclic buffer dependency of packets in a

given topology that results in a deadlock. We have named the tool as: DRAGON: Deadlock

Recognizing Topology Agnostic Network Tool.

DRAGON tool when combined with random irregular topology generator (section 4.1)

explained above helped in visualizing the effect of path diversity on the likelihood of the

deadlocks both for real application and synthetic traffic patterns. The random topology

generator helps in generating different topologies with fixed number of link failures. With

78

Figure 4.9: First occurrence of routing deadlock as a function of injection rate and different
topology sizes

DRAGON tool we can find out how the link-failure at particular location in the topology

affects the performance and likelihood of deadlocks with respect of given synthetic traffic

pattern such as Transpose, Shuffle, Tornado etc. Some synthetic traffic patterns[60] are

more likely to deadlock early compared to others due to the nature of flows (src-dst pairs),

for example, bit-complement is more likely to experience deadlock early in the simulation

compared to tornado traffic, because of its src-dst pairs.

4.3.3 Overview

The tool works in tandem with the gem5 network simulation. Routing algorithm in garnet

is aware of paths available in the topology, packets are assigned direction by the routing

algorithm towards their destination router for the next hop by the routing algorithm if there

is a valid path available in the topology. This information is used by the DRAGON tool to

generate the graph from the current state of the network.

We can set the time period for DRAGON tool to scan the network from command-line

option and generate the graph. DRAGON generate a packet dependency graph as follows.

79

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

0 3

12 15

1 2

4 7

13 14

8 11

5 6

9 10

4x4 Mesh Bit Complement

Figure 4.10: Figure shows the source-destination pairs in bit complement traffic pattern
in a 4x4 Mesh with links arrangement considering XY routing. For example, node-id: 5,
6, 9, and 10 are forming a cycle where each node is one hop away and is in the center of
topology.

4.3.4 Graph generation

Each node in the graph represents the input-port of the router. These nodes do not include

the injection input ports of the router. Network nodes in the graph are numbered with a

unique integer node-ids starting from ‘0’ for the North input port of router-id ‘0’. Edges

from one node to another node represents the direction in which the packet needs to move

in-order to make forward progress towards its destination.

The maximum number of edges from any node would be equal to number of VCs

present in the input port represented by that node in the graph. The edge would connect

this node to the node-id of corresponding input port at the downstream router where packet

would move next if the input port has free buffers as guided by the routing algorithm.

As chosen using command line option, we can set the frequency for the DRAGON tool

to kick-in and scan the network to generate this initial graph.

80

Figure 4.11: Strongly connected component (SCC) analysis done by standard graph algo-
rithms to find the deadlock cycle can give approximate number of deadlock rings [61].

4.3.5 Analysis

Once this graph is generated, we can do the analysis on it to find out shape, size and number

of cycles present in this graph (a representation of network current state).

Standard graph algorithms such as Kosaraju’s algorithm[62] or Tarjan’s algorithm[63]

are popular to find strongly connected component (SCC) in a directed graph, as shown

in the Figure 4.11. However, this analysis may not serve our purpose of finding accurate

number of deadlock cycles, as there could be one or more deadlock cycles present within

one SCC.

Moreover, what if there are more than one VC at one or many input ports of the net-

work? In this case, these algorithms can give false positive, because the essential condition

for a deadlock to occur is not just the cyclic dependency, but also all input ports are com-

pletely occupied and are also involved in cyclic dependency. Finding cycles in a multi-VC

per input port configuration of the network makes the analysis non-trivial.

To that end DRAGON proposed to find cycles by generating another graph derived

from the initial graph called as DRAGON graph. Here each node of the graph has another

property called as blocking. A node is considered blocking, if all the VCs of corresponding

81

input ports are occupied. Consequently, unblocking node is the one which has one or more

VCs free to occupy by the packets at upstream routers input port. A set is generated from

the initial graph for all such blocking nodes. After this first pass, we remove those blocking

nodes in this set which are dependent on any of the unblocking nodes.

After this second pass we are left with the set of nodes which are blocking and the

corresponding nodes they are dependent on are also blocking. Now we do the reverse

traversal of this graph to find the nodes from the initial graph which are dependent on any

of the blocking node-set obtained after the first pass and are also blocking.

The process repeats over all the blocking nodes remaining after first pass to find the

total set of blocking nodes which are dependent upon each other, in this way a graph is

generated. We call this derived directed graph as DRAGON graph as shown in Figure 4.12.

Once the process of generating DRAGON graph is finished number of individual cycles

are counted each of which corresponds to a deadlock.

With the command line option, we can set how frequently we want to analyze the

network to find deadlocks. Once the tool finds the deadlock, it can either end the simulation

or allow the packets to magically spin over deadlock ring to resolve the deadlock. Latter

helps in finding the frequency and likelihood of deadlocks for a given topology and traffic

pattern for entire simulation, while former helps to understand how susceptible the given

topology is for the routing deadlock. For example, if deadlocks occur much early during

the network simulation then the network is more susceptible to deadlocks.

4.4 Putting it together: ITG, RTG and DRAGON

Figure 4.1 shows the complete flow diagram of working of ITG, RTG and DRAGON.

DRAGON-gem5 refers to the modified version of gem5 which supports DRAGON func-

tionality. This tool is generic to find deadlocks in any irregular topology generated from

ITG tool. Integration with gem5 allows to find number of deadlocks in the real application

in gem5’s full-system mode simulation. The results are shown in Figure 4.13.

82

node-1
VC-count: 1

blocking

node-10
VC-count: 2

blocking

node-11
VC-count: 2

blocking

node-12
VC-count: 1

blocking

node-9
VC-count: 2

blocking
node-5

VC-count: 2
blocking

node-7
VC-count: 1

blocking

node-17
VC-count: 2

blocking

Deadlock
Cycle-1

Deadlock
Cycle-2

Figure 4.12: DRAGON graph: Here input port of the routers involved in deadlocks have
different number of VCs. This figure intends to show the working of tool’s concept with
different network configuration. This graph is unique to each virtual network. Number of
arrows coming out from each node represents the VC count of each input node.

Table 4.1: Key Simulation Parameters.

Real Application Simulation Parameters

Core count 16 cores and x86 ISA (PARSEC), 1 GHz
No Prefetcher

L1 Cache Private, 32KB Instruction + 64KB Data
4-way set associative

Last Level Cache (LLC) Shared, distributed, 2MB
8-way set associative

Network Parameters
Topology 4x4 Mesh (PARSEC)

Routing Algorithm Fully adaptive random
Router Latency 1-cycle

Virtual Network 6-VNets (MOESI-Hammer)
1 VC/VNet; 2 VCs/VNet

Link Bandwidth 128 bits/cycle

83

4.4.1 Results

The results obtained from real shared memory applications: PARSEC3.0[33] using full

system simulation on gem5 on regular 4x4 Mesh topology are presented in Figure 4.13.

The applications were run using MOESI hammer [64] cache coherence protocol.

We configured the network two configurations; first configuration has one VC in each

input port of the router for each message class, in second configuration there are two VCs

per input port of the router. Here in order to complete the simulation of the application, we

configured the tool to spin the packets over the deadlock cycle found, to resolve deadlock

and allow forward progress of the simulation. This way no packets were misrouted dur-

ing the simulation. Table 4.1 summarize the configuration used to obtain the results with

DRAGON tool as shown in the Figure 4.13.

Here we used the metric of Deadlocks per Million Cycles (DMC) to show how many

deadlocks are encountered during the simulation of the application within a million network

cycles. We believe that this is a good indicator of likelihood of deadlocks for a given

application and network configuration. Higher the DMC number more likely it is for the

application to get involve in a routing deadlock.

We can observe number of VCs per input port has a strong effect on the number of

deadlocks. Having a greater number of VCs increases the static area and power of the net-

work by many times. In this case I have used MOESI-hammer cache coherence protocol

which has 6 Virtual Networks (VNets). Therefore, the area and static power increases by

six-times for vc-per- vnet-2 configuration compared to vc-per-vnet-1 network configura-

tion. The tool helped in quantifying the sensitivity of deadlocks with respect to number of

VCs per input port.

84

Figure 4.13: Graph shows the sensitivity of number deadlocks in real application with
respect to number of VCs available per input port. ‘vc-per-vnet-2’ has six times buffer
overhead.

4.5 Chapter Summary

In this chapter, we introduced three tools developed to facilitate the study of deadlocks in

the network. In particular, tools were developed to:

• Generate random irregular topology of given size (section 4.1)

• Outputs Up*/Down* routing table for the generated irregular topology (section 4.2)

• Count number of deadlocks, its shape and size, at user provided sampling period

(section 4.3)

The tool has been integrated to run with gem5[7], this allowed us to characterize deadlocks

in real application traffic running with different cache coherence protocols in a full system

configuration mode with OS traffic. Next we will talk about first subactive technique called

as Brownian Bubble Router.

85

CHAPTER 5

BROWNIAN BUBBLE ROUTER (BBR)

Deadlocks are a bane for network designers, be it a Network on Chip (NoC) in a multi-core

or a large scale HPC/datacenter network. A routing deadlock occurs when there is a cyclic

dependence between the buffers of network routers. Most modern systems avoid deadlocks

by placing routing restrictions or adding extra virtual channels, in turn hurting performance

and adding overhead respectively.

In this work, we demonstrate that instead of placing such restrictions, we can, in fact,

design routers to themselves guarantee deadlock-freedom, by (i) ensuring that every router

always has at least one bubble (i.e., free buffer slot) at any input port, and (ii) this bubble

pro-actively moves between input ports. We call this a Brownian Bubble Router (BBR).

A BBR guarantees forward progress in any network topology, without requiring any routing

restrictions or additional virtual channels.

BBR moves bubble within the router at a periodic rate set at design time. It is the

first subactive technique to resolve routing level deadlocks. We qualitatively compare BBR

with prior techniques in Table 5.1, on the metric of full path diversity, Deadlock Detection

needed, scheme misroute packets, does it require extra-buffers, provides routing deadlock

freedom, and provides protocol deadlock freedom. Let us study the BBR scheme in more

detail.

5.1 Brownian Bubble Router

Brownian Bubble Router proposes to instrument routers with the ability of moving a bubble

across the input ports of the router. A bubble refers to an empty packet-sized input VC

in a virtual cut through router. This provides an opportunity to a packet that is currently

part of a deadlock cycle, to move into an empty VC in the router, potentially breaking the

86

Table 5.1: Summary Table of Qualitative Comparison of Deadlock Freedom
Mechanisms. P: Proactive, R: Reactive. S: Subactive.

Techniques Full Path
Diversity

No Detect
deadlock

No Mis-
route

No Extra
Buffers

Routing
deadlock
freedom

Protocol
deadlock
freedom

Dally’s the-
ory/Acyclic
CDG (P) [26]

✗ ✓ ✓ ✓ ✓ ✗

Duato’s the-
ory/Escape
VC (P) [52]

✗* ✓ ✓ ✗ ✓ ✗

Bubble [37,
50] (P)

✓ ✓ ✗ ✗ ✓ ✓+

Deflection
(P) [42]

✗** ✓ ✗ ✓ ✓ ✓

Deadlock
Buffers (R)
[49, 47, 65,
38]

✓ ✗ ✓ ✗*** ✓ ✓***

Coordination
(R) [41]

✓ ✗ ✓ ✗**** ✓ ✗

BBR (S) [8] ✓ ✓ ✓++ ✓ ✓ ✗
* Within escape VCs: limited path diversity + requires topology information for escape
path.
**At low-loads, full path diversity is available. But at medium-high loads, packets cannot
control the directions or paths along with they are deflected.
***DISHA [47] uses timeout counters present at each input port to choose a packet to
eject from the network. It requires a set of extra buffers to route the packet involved
in deadlock. Some variations of DISHA, such as mDISHA [49] provide protocol-level
deadlock freedom
****SPIN[41] requires a buffer in each router to hold the dynamic deadlock path over
which packets involved in deadlock would move synchronously.
+ Bubble Coloring [50] provides protocol-level deadlock freedom but involves non-
minimal path traversal.
++ BBR provides limited misrouting of packet because of Bubble Exchange subsec-
tion 5.3.1

deadlock cycle. We have assumed each VC to be as deep as 1-packet in this work. See

section 5.4 for extensions.

At the beginning of the network run, one of the VCs (VC-0 for simplicity) at one of the

input ports (excluding the injection port) of each router is tagged as the “brownian bubble

87

(BB)”. The invariant of BBR is that, there will always be one BB present per router.

To maintain this invariant, no packet from any other router is allowed to enter the BB.

Otherwise the bubble might get consumed while the deadlock continues. At a certain user-

specified frequency, the BB is moved across input ports. Moving the bubble essentially

means tagging some target VC at some other input port as the BB. If the target VC is non-

empty, all flits of its packet are explicitly moved into the original bubble - for e.g., for a

5-flit packet, this step takes 5 cycles. If the target VC is empty, some additional credit

signals are required, as we discuss later in subsection 5.4.2.

The frequency of bubble movement (BM) is based on an epoch counter. We use BBR-k

to refer to a BM every k cycles, where k is user-specified.

The target VC that the bubble is moved into is also a design choice. For the purpose

of simplicity, in our implementation the target VC is randomly selected by an arbiter with

higher priority being given to empty over non-empty VCs, to avoid explicit packet moves.

N

W E

S

Dea
dlo

ck
!E

S

W

N

1 2

34

6

Bu
bb
le N

N

W E

S

E

S

WN

1 2

34

6

N

Move

N

W E

S

Dea
dlo

ck

br
ok

en
!

E

S

WN

1 2

34

6

N

Move

N

W E

S

Dea
dlo

ck

br
ok

en
!

E

W

1 2

34

6

NN

III IVI II

Bubb
leDea

dlo
ck

!

S

Bubb
le

Bubb
le

Bu
bb
le Empty VC tagged as Brownian Bubble)

Bub
ble

Bub
ble

Bub
ble

Bub
ble

Bub
ble

Bub
ble

Bu
bb
le

Bub
ble Bub

ble
Bub

ble

Bub
ble

Bub
ble

Bub
ble

Bub
ble

Bu
bb
le

Bu
bb
le

Figure 5.1: Walkthrough [Left to Right] shows how Brownian bubble movement helps in
breaking deadlock cycles. It allows a deadlocked packet to move to some other port in its
router, and other packets, not part of the deadlock ring, to acquire its place and eventually
leave the router, thus breaking the deadlock ring. In this example, it takes two bubble
movements to break the deadlock.

88

5.2 Key Concept

5.2.1 Walk-through Example of Bubble Movement

Figure 5.1 illustrates functioning of of BBR in detail. As shown in Figure 5.1(I), packets

present in the South, West, North and East input ports of router 1, 2, 3 and 4 respectively

are currently in a deadlock. The direction (N/S/E/W) written on the packets is the direction

in which the packet is destined to go, in order to reach to its destination. The empty VC at

the West input port is tagged as a “bubble”. For the purposes of this example, consider only

Router 3 (R3). In Figure 5.1(II), the packet at the North input port of R3 is moved into the

bubble - thus the packet now sits in the West input port, while the VC at the North input

port is now free (and tagged as the BB). As explained earlier, to maintain the invariant of

keeping one BB per router, no external packet (from another router) is allowed to enter the

BB. Thus, even though there is a free VC in the deadlocked loop, the deadlock persists.

Next, in Figure 5.1(III), the bubble moves to the East input port, and the packet sitting

there comes to the North input port.‘ This packet wanted to go North (to router 2) which is

unblocked (since Router 2’s South input port is free) and will thus leave the router. This is

shown in Figure 5.1(IV). At this point, it will free the VC at the North input port, into which

the packet sitting in Router 2’s West input port can move, leading to forward progress.

Figure 5.1(IV) shows the final state of the network, where the four packets originally part

of the deadlock ring have made forward progress and now there is no deadlock. Note that

the direction initial written on the packets still represents the direction in which the packet

needs to move in order to reach to its destination.

5.3 Proof of Deadlock Freedom

Suppose there are one or more deadlocked rings going through a router.

Definition: Unblocked Packet. A packet that will eventually leave the router because

of a free credit at its downstream router.

89

Figure 5.2: Bubble-Exchange: Deadlock corner cases can still occur with simple bubble
movement technique (subsection 5.2.1). In each column, the first row shows the dead-
lock ring with involves 2, 3 and 4 routers respectively; the second row shows the bubble-
exchange state in action, and third row finally shows the routers state after deadlock is
broken.

Theorem: As long as a router has (a) at least one empty input VC (not the BB) or (b)

at least one unblocked packet, BBR breaks any cyclic

Proof: Bubble movement can move one of the deadlocked packets into the empty VC

(in case (a)), or into the VC originally occupied by the unblocked packet (in case (b)).

In case (b), the unblocked packet will eventually leave the router, leaving an empty VC

equivalent to case (a). The introduction of an empty VC into the deadlocked ring can

guarantee forward progress, breaking the deadlock.

The walk-through example in Figure 5.1 had an unblocked packet in Router 3. How-

ever, this might not always be true. Next, we discuss how an unblocked packet can be

introduced into the router, in case it does not exist, via a Bubble Exchange.

90

5.3.1 Bubble Exchange

With the current BM technique discussed so far, it is still not guaranteed that deadlock will

be broken, depending on the output directions of the buffered packets. Consider the three

cases present in Figure 5.2. Each column in the figure shows a deadlock scenario, bubble

exchange and final state of the router after exchange. Like before, the initial of the direction

present on the packet is the direction in which the packet is intended to go. Colored packets

in the router are the ones which are involved in the deadlock ring, there state is show before

deadlock, during bubble exchange and after deadlock in row-I, II and III respectively.

Figure 5.3: Figure showing router micro architecture on the left for Brownian Bubble
Router and flow diagram illustrating the order in which Brownian Bubble Router specific
actions are performed on right. Note that Brownian Bubble Router concept is generic to
any underlying topology, hence number of ports are kept as N for generality of the idea.
Here VC stands for virtual channel. Specific details about each module are discussed in
section 5.4. The area consumed by the router at 28nm is also shown.

Consider Row-I. Case A shows a 2-router deadlock. Packets intending to go East are

sitting in the east input port at the first router, and those going west are sitting at the West

input port of the neighboring router, leading to a deadlock dependence. This would not

occur in a baseline design if u-turns are not allowed. However, with bubble movement, this

scenario is possible - recall that in Figure 5.1(III), the North input port of Router-3 houses

91

a packet that wants to go North. In Row-1, Case A, no amount of bubble movement in the

two routers can resolve the deadlock, since all packets in the respective routers point to the

same direction. From the necessary condition described in section 5.3, this is because of

the lack of an unblocked packet in either of the routers. Row-1, Case B shows a 3-router

deadlock. Here bubble movement is possible with the packets requesting different output

ports. We do not enumerate all possible scenarios here in the interest of space, but all

bubble movements will still end up with a 2-router or a 4-router deadlock. Finally, Row-2

Case C shows a 4-router deadlock, where no amount of bubble movement can resolve it,

again due to the absence of an unblocked packet in any of the routers.

To resolve deadlocks in such scenarios, we introduce the concept of bubble exchange

(BE). The idea is to force forward progress of one of the packets by moving it into the

bubble at its downstream router, and then recover the bubble by moving one of the packets

at the downstream router into this router. BE is initiated by the upstream router when all

the neighboring downstream routers that the packets of this upstream router want to get to

have an occupancy of N −1, where occupancy is defined as the number of non-empty VCs

in the router across all ports (except local), and

N = num inport× num vcs per inport except local (5.1)

In other words, BE is initiated when the downstream routers are completely full, except

their BBs. BE takes two steps:

1© Upstream router routes one of the packets to the downstream router to sit at the BB

of the downstream router. This is equivalent to the upstream router consuming the BB

of the downstream router. This leads to a situation where there are 2 bubbles present at

upstream router and none at the downstream router, breaking the BB invariant temporarily.

2© The downstream router mis-routes one of its packet to upstream router’s original

bubble, to recover its bubble back. The input VC of the packet chosen to mis-route is

92

selected at random, and becomes the BB at the downstream router.

Note that steps 1© and 2© described above, are performed in tandem on bi-directional

link connected between the upstream and downstream routers involved in the bubble ex-

change.

Row-2 in Figure 5.2 shows bubble exchange in action for all three cases. The deadlocks

in all cases are broken in Row 3.

Why does Bubble exchange guarantee deadlock freedom? As discussed in sec-

tion 5.3, BBR works only if a router has an unblocked packet that is guaranteed to even-

tually leave. Bubble exchange forces one of the packets in the router to make forward

progress towards its destination, essentially making it an unblocked packet for the pur-

poses of the proof. In the worst case, a packet might move all the way to its destination via

bubble exchange, where it will eventually get consumed1.

Does Bubble exchange require deadlock detection? No. It is important to note that

the bubble recovery algorithm is a heuristic for exchanging bubbles between neighboring

routers. We do not actually detect the deadlock, thereby do not pay its associated overheads

in terms of timeout counters and probes [38]. This implies that there can be false positives.

Why is Bubble exchange performed at an occupancy of N-1? In BBR, the necessary

condition for a deadlock is an occupancy of (N-1), since the brownian bubble is always

empty. Since explicit deadlock-detection is not performed, an occupancy of N-1 triggers

a guaranteed forward movement of one of the blocked packets via bubble exchange. This

guarantees that there will never be any false negatives, though there may be false positives

(i.e., an occupancy of N-1 due to congestion and not a true deadlock).

Does Bubble exchange lead to mis-routing? Sometimes, but not always. Bubble

exchange always leads to forward progress of at least one packet. In certain cases, the

other packet might be moved to a neighbor that is not its actual preferred output port.

However, in other cases, such as Figure 5.2-Case A, both packets might end up making

1We assume that the protocol is deadlock-free, and any packet in a router may stall but will eventually get
consumed by its destination.

93

forward progress.

Does Bubble exchange lead to livelocks? It is theoretically possible, though extremely

unlikely for the same packet to keep getting misrouted as part of the bubble exchange

condition at every router it enters, never reaching its destination, leading to a livelock.

Livelocks can be avoided by disallowing more than a certain number of misroutes for any

packet, like prior works on mis-routing have explored [45]. We do not implement it in BBR

for simplicity. Our evaluations show that the number of misroutes is actually quite low.

5.4 Implementation

Figure 5.3 shows the BBR microarchitecture. In addition to modules such as VC Allocator,

Route Compute, Switch Allocator and Crossbar which have their usual function as in a

baseline router, we introduce a few additional ones to implement BM and BE. We imple-

mented the BBR modules in RTL, and observed around 7.4% area overhead (Figure 5.3)

and 4.3% power overhead over a 4-VC baseline router [66] post-layout at 28nm. BBR in-

troduces an additional mux in front of each VC, but meets timing at 1GHz like the baseline.

Thus, BBR’s additions are extremely light-weight.

We also show a flow-chart of the BBR operation in Figure 5.3. Each functional unit

specific to BBR is color-coded with the same color as its microarchitecture counterpart.

We describe key components next.

5.4.1 Bubble Movement Epoch Unit

Based on the configurable epoch parameter k, the Bubble Movement Epoch unit triggers

a BM every k cycles. BM may be aborted in a special case discussed later in the credit

management unit.

Bus. We add a small bus inside the router connecting the outputs of all the VCs ex-

cluding the port VCs. This is to facilitate bubble movement between two ports. We chose

as bus based on the insight that at any point in time there is only one packet which would

94

be moved to the BB to perform BM. This implies that there will never be contention on

this interconnect media, which suits the bus. Also, since we randomly move bubble across

input ports by giving preference to empty input ports over non-empty input ports, a bus

which connects all input ports fits our purpose. The input to the VCs can be multiplexed

between the input link and the bus. This is determined by the arbiter which handles all the

multiplexers using control signals (MOV(1), MOV(2), ...). There will never be any con-

tention for the input port of a VC between the link and the bus, since the VC into which a

packet is being written from the bus was the BB and will never receive a packet from the

input link.

Arbiter. If a BM is triggered, the arbiter chooses the input port for BM by choosing an

input VC at an input port in a round-robin manner. Priority is always given to a empty VC,

if available. The bus-arbiter unit sends out two signals, the MOV EN and the MOV signals.

The MOV EN signal is sent to the bus to indicate that a BM is impending in the next cycle

while the MOV signal is used to select the port to where this movement will happen (in

other words, the port from where a packet will be read out and put on the bus to be inserted

into the current BB). This signal remains active till all flits of the packet have been moved.

5.4.2 Credit Management Unit

Credit management is an integral part of the BBR. As mentioned earlier, no packet is al-

lowed to come and occupy the VC tagged as the brownian bubble. This is ensured by not

sending a credit for this VC to the upstream router so that it believes that this VC is actually

occupied. Thus, a BB simply looks like a full VC to the upstream router. During BM, two

cases arise.

Case I: The bubble is moved to a full VC (i.e., the packet from the full VC is moved

into the bubble). In this case, no credits need to be sent to the respective upstream routers.

This is because both upstream routers connected to the downstream router believe that the

VCs are full - it is agnostic to the fact that one has an actual packet, one is the BB, and the

95

bubble moved between them.

Case II: The bubble is moved to an empty VC. The VC that becomes the BB needs to

send a decrement credit signal to the upstream router to inform it that this VC is actually

not empty. The original VC which was the BB needs to send an increment credit signal to

the upstream router signaling that this VC is now free. This is done after one cycle of delay

to manage a corner case where the upstream router may have already started sending flits

for a new packet into this VC, which is currently on the link. This is handled by aborting

the bubble movement as follows: (a) if the upstream router receives a decrement credit for

a VC that it has already started sending flits to, it ignores the decrement credit, (b) if the

downstream router receives flits into a VC that became the BB in the previous cycle, the

original (empty) VC is tagged as the BB again. (c) the original VC sends its increment

credit signal after waiting for a cycle only if the above scenario does not occur.

5.4.3 Bubble Exchange Unit

Each router keeps track of its occupancy, which was defined earlier in subsection 5.3.1. If

the occupancy of the router reaches (N-1), where N is the total number of input VCs at all

ports of the router (except local), it collects the occupancy of its neighbors. If the neighbors

have an occupancy greater than a certain threshold (max threshold is N-1), BE is triggered

by setting the EXC flag. This reads one of the packets from the router and sends it out of

the crossbar and output link to the neighboring router. The neighbor in turn sends a packet

to this router which is added into this router’s BB. A subtle point to note is that BE does

not steal any useful link bandwidth since the occupancy of (N-1) at both routers means that

they were unable to send packets to each other via regular switch allocation due to the lack

of credits, and so the links between them were anyway idle.

BE is a measure of how reactive the router is towards recovering from the deadlock by

exchanging the bubble. The occupancy metric we use to trigger BE is just a heuristic. From

a correctness point of view, BE can be triggered more pro-actively or at a fixed time epoch

96

Table 5.2: Network Configuration.

Network
Topology 8x8 Mesh
Router latency 1-cycle
Num VCs 1, 2, 3, 4
Buffer Organization Virtual Cut Through

Single packet per virtual
channel

Target Networks
Deadlock Avoidance West-first and Escape VC

Deadlock Recovery Static Bubble [38] and
SPIN [41]

Brownian Bubble Router BBR-k (k= BM frequency)

in alternate implementations.

5.5 Adding BBR over Alternate Router Microarchitectures

BBR’s underlying mechanism of periodic bubble movement across input ports within a

router, followed by occupancy-driven bubble exchanges between neighboring routers, can

be applied to any input buffered VC router to guarantee deadlock freedom in the net-

work, as we showed in section 5.3. This makes it agnostic to the underlying topology

(mesh/high-radix/irregular/reconfigurable [67]), routing algorithm (XY/adaptive [68]) and

router bypass optimizations [66]. BBR can also work with wormhole routers, but will re-

quire additional complexity (such as packet truncation [42]) to manage ordering since parts

of the same packet might end up at different input ports of the same router due to BM.

5.6 Evaluation

5.6.1 Methodology

We model Brownian Bubble Router in the Garnet [59] cycle-accurate NoC simulator. For

BBR, we implement a minimal fully adaptive random routing algorithm. We use credits at

the downstream router to decide the direction if more than one choice exists.

Table 5.2 lists the system configurations we evaluated. We contrast BBR against both

97

0

20

40

60

80

100

0.02 0.12 0.22 0.32%
ag

e
of

 p
ac

ke
t r

ec
ei

ve
d

Injection rate (packets injected/node/cycle)

8x8 Mesh
VC: 1

Routing: Random

BBR Bit-Complement Bit-Rotation Uniform-Random

0

20

40

60

80

100

0.02 0.12 0.22 0.32

%
ag

e
of

 p
ac

ke
t r

ec
ei

ve
d

Injection rate (packets injected/node/cycle)

8x8 Mesh
VC: 4

Routing: Random

BBR Bit-Complement Bit-Rotation Uniform-Random

Figure 5.4: Correctness of Brownian Bubble Router. For a fixed number of packets for the
simulation, x-axis shows total packets injected in network per node per cycle and y axis
shows %age of total packets received at the end of simulation.

classic deadlock-avoidance (West-first and escape VC) and state-of-the-art deadlock-recovery

(Static Bubble [38] and SPIN [41]) schemes. All networks use a single-cycle router.

Recall that the rate of bubble movement (BM) is a knob given to the network designer

to tune the frequency of bubble movement within the router.

We evaluate BBR with multiple BM epoch values and report results with 1 (i.e., every

cycle), 64 (every 64 cycles) and 1024 (every 1024 cycles). For BE, we empirically set the

occupancy threshold at downstream routers to 4.

5.6.2 Correctness

The primary claim of Brownian Bubble Router is to make sure there is no deadlock that

persists in the network. We show this in Figure 5.4 for a 8 × 8 mesh topology. On y-

axis we plot the percentage of packets received over fixed packets injected in the network.

X-axis shows the injection rate at which these packets are injected in the network. All

traffic patterns use fully random routing. Figure 5.4 also shows how sensitive the network

is towards the number of VCs present per input port in the router. We see that network

deadlocks at much lower injection rate when number of VCs is 1 compared to when it is 4.

This is especially stark in bit complement traffic which deadlocks almost immediately in a

1 VC design. BBR performs consistently by delivering 100% packets that are injected in

98

10

30

50

70

0.02 0.12 0.22 0.32

La
te

nc
y

(C
yc

le
s)

Injection rate (packets injected/node/cycle)

Traffic: Shuffle
VC: 4
64c

BBR-1 BBR-64 BBR-1024 escapevc

10

30

50

70

0.02 0.07 0.12 0.17 0.22 0.27

La
te

nc
y

(C
yc

le
s)

Injection rate (packets injected/node/cycle)

Traffic: Transpose
VC: 4
64c

BBR-1 BBR-64 BBR-1024 escapevc

10

30

50

70

0.02 0.07 0.12 0.17 0.22 0.27

L
a

te
n

c
y

 (
C

y
c
le

s
)

Injection rate (packets injected/node/cycle)

Traffic: UniformRandom

VC: 4

64c

BBR-1 BBR-64 BBR-1024 escapevc WestFirst SPIN StaticBubble

10

30

50

70

0.02 0.12 0.22 0.32

La
te

nc
y

(C
yc

le
s)

Injection rate (packets injected/node/cycle)

Traffic: BitRotation
VC: 4
64c

BBR-1 BBR-64 BBR-1024 escapeVc WestFirst SPIN StaticBubble

(a) VC per VNet = 4; 8x8 Mesh

10
20
30
40
50
60
70

0.02 0.04 0.06 0.08 0.1 0.12

La
te

n
cy

 (
C

yc
le

s)

Injection rate (packets injected/node/cycle)

Traffic: Transpose
VC: 2
64c

BBR-1 BBR-64 BBR-1024 escapevc WestFirst SPIN StaticBubble

10

30

50

70

0.02 0.07 0.12 0.17

L
a

te
n

c
y

 (
C

y
c
le

s
)

Injection rate (packets injected/node/cycle)

Traffic: UniformRandom

VC: 2

64c

BBR-1 BBR-64 BBR-1024 escapevc WestFirst SPIN StaticBubble

5

25

45

65

0.02 0.07 0.12 0.17 0.22

La
te

nc
y

(C
yc

le
s)

Injection rate (packets injected/node/cycle)

Traffic: BitRotation
VC: 2
64c

5

25

45

65

0.02 0.04 0.06 0.08 0.1

La
te

n
cy

 (
C

y
cl

e
s)

Injection rate (packets injected/node/cycle)

Traffic: Shuffle

VC: 2

64c

BBR-1 BBR-64 BBR-1024 escapevc WestFirst SPIN StaticBubble

(b) VC per VNet = 2; 8x8 Mesh

Figure 5.5: Performance of Brownian Bubble Router technique compared against recently
proposed deadlock recovery schemes and well known deadlock avoidance schemes such as
escapeVC and WestFirst Routing, proving its superiority. Here x-axis shows total packets
injected in network per node per cycle and y-axis shows the average latency incurred by
packets in cycles.

99

0.01

0.11

0.21

0.31

0.02 0.07 0.12 0.17 0.22 0.27 0.32 0.37 0.42 0.47

Re
ce

pt
io

n
ra

te
 (p

ac
ke

ts

re
ce

iv
ed

/n
od

e/
cy

cl
e)

Injection rate (packets injected/node/cycle)

XY-Routing
UniformRandom

8x8 Mesh

vc-4_Baseline vc-4_BBR-1 vc-4_BBR-64 vc-4_BBR-512 vc-4_BBR-1024

vc-2-Baseline vc-BBR-1 vc-2_BBR-64 vc-2_BBR-512 vc-2_BBR-1024

0.01

0.06

0.11

0.16

0.21

0.02 0.12 0.22 0.32 0.42

Re
ce

pt
io

n
ra

te
 (p

ac
ke

ts

re
ce

iv
ed

/n
od

e/
cy

cl
e)

Injection rate (packets injected/node/cycle)

XY-Routing
Bit-Complement

8x8 Mesh

0.01

0.11

0.21

0.31

0.02 0.07 0.12 0.17 0.22 0.27 0.32 0.37 0.42 0.47

Re
ce

pt
io

n
ra

te
 (p

ac
ke

ts

re
ce

iv
ed

/n
od

e/
cy

cle
)

Injection rate (packets injected/node/cycle)

XY-Routing
UniformRandom

8x8 Mesh

Figure 5.6: Overhead introduced when adding BBR over a baseline deadlock-free XY
routing algorithm.

the network at all injection rate for all traffic patterns.

5.6.3 Performance

Next, in Figure 5.5, we evaluate BBR against state-of-the-art deadlock freedom techniques

for a 8× 8 mesh at different VC counts.

In the interest of space, we only present results for transpose, shuffle, uniform-random

and bit rotation traffic pattern for 2 and 4 VCs respectively. With 4 VCs, we observe 37%

throughput improvement over WestFirst and escapeVC (deadlock avoidance) on average

and 3× improvement over Static Bubble and SPIN (deadlock recovery). With 2 VCs, we

observe 44% improvement over WestFirst and escape VC, and .2.5× improvement over

Static Bubble and SPIN. For many of the patterns, the performance improvements are

higher at 2 VCs as opposed to 4 because of the path diversity provided by fully adap-

tive routing enabled by BBR in all VCs. In contrast, West-first lacks path diversity in the

west direction, while escape VC only provides full path diversity within one of its VCs (the

other one restricted to west-first).

With 1 VC, however, we found the latency with BBR to be erratic at a few injection

rates. This is because the input port where the bubble resides essentially gets blocked for

the upstream router for a period of time, leading to uneven and unpredictable delays until

100

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.02 0.07 0.12 0.17 0.22 0.27 0.32

N
or

m
al

iz
ed

 B
ub

bl
e-

M
ov

em
en

t
ov

er
 b

uf
fe

r r
ea

ds

Injection rate (packets injected/node/cycle)

uniform-random
VC: 3

8x8 Mesh

bbr-1 bbr-64 bbr-512 bbr-1024 bbr-2048

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

0.1

0.02 0.07 0.12 0.17 0.22

N
or

m
al

iz
ed

 B
ub

bl
e-

M
ov

em
en

t
ov

er
 b

uf
fe

r
re

ad
s

Injection rate (packets injected/node/cycle)

bit-reverse
VC: 3

8x8 Mesh

bbr-1 bbr-64 bbr-512 bbr-1024 bbr-2048

Figure 5.7: Bubble Movement Frequency: y-axis shows ratio of buffer reads (or writes)
due to BM over the baseline buffer reads (or writes). BBR-1 shows the highest BM for
bit-reverse compared to other BBR-k; this behavior is opposite in uniform random traffic.
This shows distribution of BM across BBR-k is highly traffic dependent.

packet reaches its destination. However, it is important to note that a 1 VC BBR design is

deadlock-free, as we showed earlier in Figure 5.4.

We also performed an experiment to understand the performance overhead BBR adds

on top of an already deadlock-free routing algorithm, such as XY. In Figure 5.6, we plot

the reception rate for a baseline XY scheme and various BBR schemes with 2 and 4 VCs.

We notice that an aggressive BBR-1 (that tries to perform bubble movement every cycle)

leads to a 25% drop in throughput for uniform random and 35% drop in throughput for bit

complement averaged over all VC count. But with higher values of the epoch, the drop is

only 9%. Recall that at high loads, BE kicks in once the upstream and downstream routers

start becoming full, which leads to a performance differential at high loads, even if the BM

epoch is set very high. If we restrict BE to occur on a very high fixed threshold, rather than

based on occupancy, BBR would have essentially no overhead if the underlying algorithm

is inherently deadlock free.

5.6.4 Bubble Movement and Bubble Exchange Frequency

Having shown the correctness and performance benefits of BBR, next we study the poten-

tial overhead. As discussed earlier in section 5.4, the area overhead for implementing BBR

is negligible. However, each bubble movement involves reading a packet out of its current

VC and writing it into an empty VC, increasing the total buffer activity. The same occurs

101

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.02 0.12 0.22 0.32

N
o

rm
a

li
ze

d
 B

u
b

b
le

-

E
x
ch

a
n

g
e

 o
v

e
r

b
u

ff
e

r
re

a
d

s

Injection rate (packets injected/node/cycle)

uniform-random

VC: 3

8x8 Mesh

bbr-1 bbr-64 bbr-512 bbr-1024 bbr-2048

0

0.1

0.2

0.3

0.4

0.5

0.6

0.02 0.07 0.12 0.17 0.22

N
or

m
al

iz
ed

 B
ub

bl
e-

Ex
ch

an
ge

 o
ve

r
bu

ff
er

 re
ad

s

Injection rate (packets injected/node/cycle)

bit-reverse
VC: 3

8x8 Mesh

bbr-1 bbr-64 bbr-512 bbr-1024 bbr-2048

Figure 5.8: Bubble-Exchange Frequency: here y-axis shows ratio of buffer reads (or writes)
due to BEs over the baseline buffer reads (or writes) and x-axis shows the packets injected
in the network per node per cycle. We see that BBR-1 has highest BE over any other
BBR-k.

in during a bubble exchange as well, across neighboring routers. This can naturally have

energy implications.

We quantify this overhead in the next set of experiments. In Figure 5.7 and Figure 5.8 we

plot the ratio of additional buffer reads (or writes) due to BM and BE respectively over the

baseline buffer reads (or writes) for various values of BBR-k, where k is the frequency of

BM. In the interest of space, we plot the behavior for two patterns - uniform-random and

bit-reverse which show contrasting characteristics. Other traffic patterns showed similar

behavior to one of these patterns. Note that a BM between empty VCs does not count as a

buffer read/write.

In Figure 5.7, we highlight that there is no bubble movement up to a certain injection

rate; this is because at low loads, more than two VCs are empty across all ports of the router

in most cases, so a BM does not need an explicit packet read and write. This shows that BM

actually adds no energy overhead, especially at low to medium loads which is the common

operating point for most NoCs. At high injection rates, the network is more susceptible to

deadlock, and naturally the number of BMs go up as well. One might expect low values

of k (i.e., high frequency of BM) to lead to higher number of buffer reads/writes. This can

be seen as true in bit rotation, where BBR-1 shows up to 4x more buffer reads/writes than

BBR-64 post saturation. Counter intuitively, though, the opposite is seen in uniform ran-

102

dom traffic, where a higher value of k actually end up leading to more bubble movements

overall. This is because with a low frequency of BM, deadlocks persist for longer and end

up requiring more BMs to provide forward progress. This shows a subtle yet important

feature of BBR that it is adaptive; hence the energy consumption will be more only if the

traffic is susceptible to deadlock.

In Figure 5.8, we see that BBR-64 and beyond, the number of BEs is negligible. A

notable exception is BBR-1 (moving bubble every cycle) which shows the highest number

of BEs over any other BBR-k (lower frequency of bubble movement). This can be under-

stood as follows - high BM ends up moving packets to other free VCs in the router very

frequently, leading to more occupancy within the router. This in turn triggers BE more

frequently. In contrast, at low BM frequency, the router tends to remain emptier (especially

at low loads), leading to fewer forward movements due to BE.

In summary, the impact of the BM frequency depends heavily the traffic pattern and

injection rate. For uniform random traffic, we observe that BE, not BM actually tends to

dominate. Moreover, the energy overhead can be controlled via various knobs exposed to

the designers such as the BM frequency and BE occupancy threshold.

5.6.5 BBR for Irregular Topologies

Next, we study BBR performance with an irregular topology as shown in left most sub-

figure in Figure 5.9. Here the link between routers 5 and 6 in a mesh is broken, which could

be due to various reasons such as power gating or dynamic faults in the network [69]. A

challenge with irregular topologies is that traditional turn-restrictions (such as XY) will not

longer work - for e.g., any packet from 5 to {10, 11, 14, 15} will have to make a Y to X

turn at 9. Similarly, a Y to X turn at 2 will have to be allowed. Such turns could lead to

a 5 → 9 → 10 → 6 → 2 → 1 → 5 deadlock. In such scenarios, the deadlock free routing

option is to construct a spanning tree [69, 70, 71, 72], which will not allow the use of the

link between router 1 and 2 (highlighted in grey) to avoid cycles. BBR does not need any

103

5

25

45

65

0.02 0.07 0.12 0.17 0.22

La
te

n
cy

 (
C

yc
le

s)

Injection rate (packets injected/node/cycle)

Bit Complement
VC:4
16c

irregular-bbr-1 irregular-bbr-64 irregular-bbr-512
irregular-bbr-1024 irregular-bbr-2048 spanningTree

5

25

45

65

0.02 0.12 0.22 0.32 0.42

La
te

nc
y

(C
yc

le
s)

Injection rate (packets injected/node/cycle)

Bit Rotation
VC:4
16c

irregular-bbr-1 irregular-bbr-64 irregular-bbr-512
irregular-bbr-1024 irregular-bbr-2048 spanningTree

5

15

25

35

45

0.02 0.12 0.22 0.32 0.42

La
te

nc
y

(C
yc

le
s)

Injection rate (packets injected/node/cycle)

Uniform Random
VC:4
16c

irregular-bbr-1 irregular-bbr-64 irregular-bbr-512
irregular-bbr-1024 irregular-bbr-2048 spanningTree

12 13 14 15

8 9 10 11

4 5 6 7

0 1 2 3

Figure 5.9: A 4x4 Mesh with a faulty link (shown with X). XY routing can no longer
work. Traditional deadlock avoidance (Spanning Tree) will disable the use of the grey
link to avoid cycles, leading to non-minimal routes. Thus BBR provides higher saturation
throughput.

such restrictions and enjoys the full path diversity. This translates to around 40% higher

throughput on average over the spanning tree routing algorithm as shown in Figure 5.9.

5.7 Discussion

BBR is a subactive technique because unlike proactive techniques it does not reserve hard-

ware resources to make sure deadlock does not occur to begin with, nor it detects deadlock

in the network at runtime and resolve it, instead it periodically moves packets within the

router to make sure if there is any deadlock present in the network it gets resolved. BBR

uses bubble to shuffle packets within the router. This allows the blocked packet to free up

the input port which was earlier involved in the deadlock. Having bubble however puts

restrictions on thenumber of packets that can use buffers in the network, consequently it

lowers the throughput of the router. One extension to BBR is to shuffle the packets within

the routers input port, which is occupying the head of the queue. Instead of using bub-

104

ble to shuffle packets within the network. Moreover, instead of doing oblivious shuffling,

which could increase the energy consumption, we can shuffle packets based on a threshold

number of cycles. If the packet is stuck for a threshold number of cycles, then it becomes

a candidate to be replaced from its current inport and occupy inport which has either free

buffers available or there is unblocked packet present in that input port.

5.7.1 Improving BBR using CDG information of the topology

BBR proposal moves packet obliviously within router. Channel Dependency Graph (CDG)

gives an important indication of the routing deadlock cycle that can form within the topol-

ogy. In CDG each link of the original topology is a node and edge in CDG represents the

turn/direction in which a packet can move as allowed by the routing algorithm. CDG is a

static information and it can be used tochoose the input port and unblock packet, present in

the router to replace the current blocked packet to resolve the deadlock.

5.7.2 Extending BBR for protocol deadlock freedom

BBR in its present form provides routing deadlock freedom. One natural extension of BBR

could be to provide protocol-deadlock freedom. Routing deadlock freedom ensures that

there is no cyclic dependency of packets in the network. With BBR, if we can prioritize

the movement of response packet/terminal message class packet over request (or Ack)/non-

terminal class packet, then we can ensure protocol level freedom. It will be an interesting

case-study to ensure how packet prioritization logic works in tandem with packet-shuffling

algorithm of BBR.

5.8 Chapter Summary

BBR [8] was the first work to introduce the routing deadlock freedom by freeing-up the

input port involved in the routing-deadlock. This was achieved by obliviously shuffling

packets among the routers’ input-ports such that the deadlocked packet occupying the dead-

105

locked/blocked input port moves to other input port. This packet-shuffling, in turn, would

free the original deadlocked input port, allowing packet involved in the deadlock at the

upstream router to make forward progress. BBR is the first scheme to provide subactive

routing deadlock freedom. We qualitatively compare BBR with prior work in Table 5.1.

In the next chapter, we will see how we can take the idea of BBR and apply it to

the whole network to provide not only routing deadlock freedom but protocol deadlock

freedom. This leads us to our next work in the domain of subactive deadlock freedom

called BINDU[9].

106

CHAPTER 6

BUBBLE IN IRREGULAR NETWORK FOR DEADLOCK PURGING (BINDU)

Every interconnection network must ensure, for its functional correctness, that it is dead-

lock free. A routing deadlock occurs when there is a cyclic dependency of packets when

acquiring the buffers of the routers.

Prior solutions have provisioned an extra set of escape buffers to resolve deadlocks or

restrict the path that a packet can take in the network by disallowing certain turns. This

either pays higher power/area overhead or impacts performance. In this work, we demon-

strate that (i) keeping one virtual-channel in the entire network (called ‘Bindu’) empty, and

(ii) forcing it to move through all input ports of every router in the network via a pre-defined

path, can guarantee deadlock-freedom. We show that our scheme (a) is topology agnostic

(we evaluate it on multiple topologies, both regular and irregular), (b) does not impose any

turn restrictions on packets, (c) does not require an extra set of escape buffers, and (d) is

free from the complex circuitry for detecting and recovering from deadlocks.

We delineate BINDU and BBR while comparing with prior Proactive and Reactive

deadlock freedom techniques in Table 6.1. Unlike BBR, BINDU does more frequent mis-

routing. However, it does not require bubble in each router of the network. Let us study

this subactive scheme in more details.

6.1 BINDU

In this work, called BINDU (Bubble in Irregular Network for Deadlock pUrging), we

demonstrate, for the first time, that it is possible to provide deadlock freedom with just

a single bubble (referred to as a ‘Bindu’1 and defined formally in subsection 6.1.1) in the

1Bindu is a Hindi word, meaning ‘point’. With a collection of points, we can draw any geometrical figure;
similarly with BINDU we can make any topology deadlock free.

107

Table 6.1: Summary Table of Qualitative Comparison of Deadlock Freedom
Mechanisms. P: Proactive, R: Reactive. S: Subactive.

Techniques Full Path
Diversity

No Detect
deadlock

No Mis-
route

No Extra
Buffers

Routing
deadlock
freedom

Protocol
deadlock
freedom

Dally’s the-
ory/Acyclic
CDG (P) [26]

✗ ✓ ✓ ✓ ✓ ✗

Duato’s the-
ory/Escape
VC (P) [52]

✗* ✓ ✓ ✗ ✓ ✗

Bubble [37,
50] (P)

✓ ✓ ✗ ✗ ✓ ✓+

Deflection
(P) [42]

✗** ✓ ✗ ✓ ✓ ✓

Deadlock
Buffers (R)
[49, 47, 65,
38]

✓ ✗ ✓ ✗*** ✓ ✓***

Coordination
(R) [41]

✓ ✗ ✓ ✗**** ✓ ✗

BBR (S) [8] ✓ ✓ ✓++ ✓ ✓ ✗

BINDU (S)
[9]

✓ ✓ ✗ ✓ ✓ ✗

* Within escape VCs: limited path diversity + requires topology information for escape
path.
**At low-loads, full path diversity is available. But at medium-high loads, packets cannot
control the directions or paths along with they are deflected.
***DISHA [47] uses timeout counters present at each input port to choose a packet to
eject from the network. It requires a set of extra buffers to route the packet involved
in deadlock. Some variations of DISHA, such as mDISHA [49] provide protocol-level
deadlock freedom
****SPIN[41] requires a buffer in each router to hold the dynamic deadlock path over
which packets involved in deadlock would move synchronously.
+ Bubble Coloring [50] provides protocol-level deadlock freedom but involves non-
minimal path traversal.
++ BBR provides limited misrouting of packet because of Bubble Exchange subsec-
tion 5.3.1

entire network. The Bindu moves through the network in a fixed path, covering all the

routers and their input ports in the network. During its course the Bindu shuffles the pack-

ets present in the network, naturally resolving any deadlock that comes in its path.

108

0 1

43

2

5

6 7 8

0 1

43

2

5

6

7

8

4 Intra-router Bindu
movement

(a) (b)
Inter-router Bindu

movement

startstart

0 1

43

2

5

6 7 8

B

4

7 1

206 8

3 5

Bindu-1 Path

Bindu-1 Tree

4 7 6 3 6 7 8 5 8 7 4 1 0 1 2 1 4

5

Intra-router
Bindu

movement

1

2

3
4

5 6 9

8 7
10

11

16

14
15

12
13

8 7

7.1

7.2
7.3

(c)

Figure 6.1: Examples of Bindu-paths. Each Bindu must go through all input ports of all
routers of the network, at least once. (a) Bindu moving through all ports of a router before
jumping to the next router, (b) Bindu jumping between input ports of different routers
throughout its path, (c) A tree-based Bindu-path for an irregular topology

The following are the primary contributions of this work:

1. A novel technique to guarantee deadlock freedom in arbitrary irregular topologies

by having one or more Bindus (empty VC) in the entire network, and to force these

Bindus to move through-out the network at a periodic rate.

2. BINDU frees the designer from any consideration of deadlock when designing their

routing algorithm, allowing high performance with minimal overhead.

3. And evaluation of how BINDU performance compares with previously proposed

deadlock freedom techniques with both synthetic traffic and real applications on both

109

regular and irregular topologies2.

6.1.1 Definitions

We formally define terms here that we will use throughout the paper.

Bindu: In BINDU, Bindu refers to a reserved packet-sized empty VC, that is instan-

tiated at the starting of the network run. It makes pro-active movement throughout the

network covering all the input ports of every router in the network, as shown in Figure 6.1.

Unlike ‘Bubble’ used in previous works [37, 39], no packet can sit inside the Bindu. As

a Bindu proactively moves through the network, packets get displaced, as shown in the

walk-through Figure 6.2.

k-Bindu: BINDU networks can incorporate multiple Bindus within the network, each

following its own path as shown in Figure 6.1(c) and Figure 6.2. We refer to this configura-

tion as ‘k-Bindu’, where ‘k’ is the number of Bindus instantiated at the starting of network

run.

Bindu movement: Movement of Bindu from one VC to another within the router or

across routers.

Moving a Bindu from <Router i, Port m, VC k> to <Router i+1 Port n, VC o>, ef-

fectively means reading the packet from <..., VC o> and writing it to <..., VC k>3.

Blocked Packet: A packet which is indefinitely stuck because it is part of a deadlock

ring.

Unblocked Packet: A packet which might be temporarily stalled, because of conges-

tion in the network or unavailability of credits at the downstream router. However, it is

guaranteed to eventually leave the router. Empty slot: An empty VC in a router.

2We would like to note that the focus of this work is not on the important problem of dynamic fault-
tolerance; rather it guarantees deadlock freedom in static irregular topologies, which may be created due to
faults or at design time.

3We assume Virtual Cut-Through, i.e., all VCs that the Bindu traverses are sized to hold the largest packet.
Wormhole designs will be discussed in section 6.4

110

0 1

43

1
4

3
0

2

5

6 7 8
5

4
7

8
Deadlock
cycle

Faulty link

Bubble movement

Packet
(destination 0)

(a) 2 deadlocks present in network having
two Bindus initialized randomly (c) Deadlocks resolved

0 1

43

2

5

6 7 8

0

0 1

43

1
4

3
0

2

5

6 7 8
5

4
7

8

(b) Two Bindus showing both inter and intra
bubble movement to resolve deadlock

B

B Bindu-2

B

B

B

43
7

B

4

3
7

B 4

3
7B

7 858
B

7 858
B

4

5
B

7B
3

0

1
4

7 8
5

8 B

8

B Bindu-1

1 2 3 1 2 3

Figure 6.2: Walkthrough figure showing the BINDU in action. Here deadlock involving
router-0,1,3 and 4 is resolved by intra-router Bindu movement of Bindu-1 and deadlock
involving router-4, 5, 7 and 8 is resolved by inter-router Bindu movement of Bindu-2.
Network state corresponding to each type of Bindu movement is shown in sub-figure (b)
and (c) respectively.

6.1.2 Basic Idea and Walk-through Example

Deadlocks are characterized by cyclic dependency of packets, which renders the forward

movement impossible. BINDU tries to resolve this cyclic dependency using one or more

Bindus in the network. A Bindu can be randomly initialized at one of input VCs of any

router, barring the injection input VCs. Multiple Bindus can co-exist within a router - but

cannot reserve the same VC at the same time.

6.2 BINDU Network

Each Bindu pro-actively moves in a predefined path which cycles back from where it started

(Figure 6.1). Bindu’s movement results in the partial shuffling of packets in the network.

This results in naturally resolving any deadlock cycle which comes in Bindu’s path. To

understand the BINDU technique in more detail, let us walk-through the scheme with an

example. Figure 6.2(a) shows two deadlocks in a 3x3 Mesh; the link between router-2 and

router-5 is faulty, resulting in an irregular topology. The number on the packet refers to its

destination router-id.

111

Even though one Bindu is enough to resolve the deadlock, we show two Bindus in the

walk-through figure to underline the generality of the scheme.

In Figure 6.2(b), we focus on the deadlock between packets in Routers-0, 1, 3 and 4.

Bindu-1 moves within Router-4 from the North to the South to the West port. This results

in an empty slot in the South port, which can now be used by the packet stuck in Router-1

to make forward progress, resolving the deadlock.

In Figure 6.2(c), we focus on the deadlock between packets in Routers-4, 5, 7 and 8.

Bindu-2 jumps from Router-8 to Router-7. An important point to observe is that Bindu-2

first traverses within Router-8 from South to West (similar to Bindu-1), and then jumps

to the connected Router-7 to its East port. The deadlock is resolved as Bindu replaces an

earlier blocked (i.e., deadlocked) packet at West input port of Router-8 with an empty VC.

All Bindus need to traverse through all ports of all routers, as we discuss in subsec-

tion 6.2.1. The implications of Bindu’s intra and inter-router movements on the router

micro-architecture are discussed in section 6.4.

6.2.1 Bindu Path

All Bindus move through all the input ports of every router in the topology (both regular

and irregular) at a periodic rate indefinitely. There can be multiple possible paths. Fig-

ure 6.1 shows three possible paths for Bindus in a 3×3 Mesh. In Figure 6.1(a), each Bindu

snakes through the network routers, moving through all input ports at each router; in Fig-

ure 6.1(b), Bindus jump between input ports of different routers in each step; Figure 6.1(c),

the Bindu uses a tree to loop through the entire network as it is an irregular topology where

the original snake does not work. As mentioned earlier, there can be more than one Bindu

in the network, and each Bindu can choose different paths. The Bindu-path is encoded

within each router; i.e., each router has a preset order of input ports through which the

Bindu should move, and a preset neighbor to which the Bindu should jump. The next

inport-id (intra-router) or router-id (inter-router) where Bindu needs to move is provided

112

by the current router. A router can have multiple paths encoded, indexed by the Bindu id.

We discuss static vs. dynamic configurability of Bindu paths in section 6.4.

6.2.2 Bindu Movement

Moving a Bindu from VC-A to VC-B requires explicitly moving the packet from VC-B to

VC-A. VC-B could be a VC within the router (during intra-router Bindu movement), or at

a neighboring router (during inter-router Bindu movement). Moving a Bindu across routers

can lead to a temporary misroute of the packet.

In our design, we constrain Bindu to move only across VC-0 within the input ports

of all routers in the network during both intra- and inter-router Bindu movement. This

decision simplifies the router micro-architecture for BINDU (section 6.4). VC-0 is Virtual-

Cut Through. A Bindu movement takes f cycles, where f is the number of flits in the

packet. Naturally, the Bindu movement period p needs to be greater than the size of the

largest packet that can sit in VC-0.

6.3 Proof of Deadlock freedom

In this section, we explain the proof of BINDU technique for deadlock freedom using

Figure 6.3 as reference. We refer to the terms defined in subsection 6.1.1 and provide the

following arguments.

1. By the virtue of the Bindu’s looped path, it is guaranteed to visit every deadlock ring

in the network.

2. As Bindu moves into the deadlock ring and then moves out of deadlock ring it either

brings a fresh packet or an empty slot into the deadlock ring.

3. If Bindu brings in the empty slot at its place (Figure 6.3-(a)), then, by default, it

resolves the deadlock as the earlier deadlocked packet can take up that empty slot

breaking the deadlock dependency.

113

1

2

3

4
Eject from

deadlock ring

7

12

9 Unblocked
Packet
dest. 9

1

2

3

4

Packet
(destination 0)0

B
leaves

deadlock-ring

1

2

3

4

1

24

B 9

Bindu-
Movement

1

2

3

4

1

24

9

Deadlock
cycle

Deadlock
resolved

1

2

3

4
Eject from

deadlock ring

7

12

1

2

3

4

B

empty slot into
deadlock-ring

1

2

3

4

1

24

B

Bindu-
Movement

1

2

3

4

1

24

Deadlock
resolvedNetwork

12

1

2

3

4

1

24

B 2

Bindu-
Movement

1

2

3

4

1

24

2
9
B

1

2

3

4

1

2

2
9

B

3

1

2

3

4

1

2

2

1

2

3

4

1

2

3 3

12
3

11
B

B
1

2

3

4

1

2

3 3

Eject from
Network

Deadlock
resolved

Blocked
Packet
dest. 0

0

(a) (b)

(c)

Direction of pkt move
to reach its destination

Figure 6.3: The figure shows: (a) The way Bindu resolves the deadlock when it brings
an empty slot to the deadlock ring. (b) How Bindu resolves the deadlock when it brings
a unblocked packet to the deadlock ring. (c) Bindu resolves the deadlock by shuffling
the packets present within the deadlock ring. The number inside the packet refers to its
destination.

4. If Bindu brings in a fresh packet to the deadlock ring, then there could be two pos-

sibilities. This fresh packet can either be ‘unblocked’ or ‘blocked’, as defined in

subsection 6.1.1.

5. If the fresh packet is unblocked (Figure 6.3-(b)), it will naturally leave the deadlock

ring; this will create an empty slot in the deadlock ring, and deadlock will naturally

get resolved as described in point 3.

6. However, if the fresh packet is blocked, then deadlock would persist until the next

Bindu movement into the deadlock ring. If the next Bindu movement creates the

empty slot or brings in unblocked fresh packet to deadlock ring, then deadlock will

get resolved as mentioned in point 3 and point 5.

7. There could be a very rare, corner case in which Bindu movement will keep bringing

a blocked packet to the deadlock ring (Figure 6.3-(c)). This, in fact, means that the

packets being brought into the deadlock ring by Bindu are part of the same deadlock

ring. Here, Bindu movement effectively shuffles the packets within the deadlock ring.

114

This shuffling of packets within the deadlock ring ensures that eventually, at least one

packet would reach to its destination because of shuffling and eject-out of the network

as shown in Figure 6.3-(c). This would finally lead to deadlock resolution.

8. A final pathological corner case could be when all packets of the network are in one

big deadlock loop (e.g., this could occur in a ring topology). In such a scenario, the

movement of packets due to Bindu will continue to remain in a cyclic loop. However,

once a Bindu completes a full looped path, all packets would have effectively been

spun around, as described in [41]. Eventually after ‘k’ spins one of the packets

would reach its destination and eject out from the network. This would again lead to

deadlock resolution.

It is worth noting that we did not actually observe either (7) or (8) in our extensive experi-

ments.

Livelocks: Livelock is the condition where a packet keeps moving indefinitely but never

reaches its destination. Recall that packets get misrouted by one-hop due to a Bindu move-

ment. As long as the packet makes two forward hops before a Bindu misroutes it again,

it will not livelock. Since Bindu paths are fixed, for the Bindu to arrive at the same router

again, it will take N×r×p cycles, where ‘N ’ is the number of nodes, ‘r’ is the router radix

and ‘p’ is the Bindu movement period. During this time, if the network is not congested,

a packet will definitely move forward two hops (even if N and r are small, p can be set to

a large enough value to ensure two hops). If the end points are congested, it is theoreti-

cally possible, though extremely unlikely, for the same packet to be stuck at a router till the

Bindu traverses the entire network and returns, and get misrouted again. However, as long

as the network is deadlock-free (proven above), it cannot be congested indefinitely, thereby

ensuring that eventually the packet will move forward two hops, and thus not livelock.

115

vc0

vc3
vc2
vc1
vc0

vc0
vc3
vc2
vc1

vc3
vc2
vc1 vc0

vc
3

vc
2

vc
1B

Mov

Mov

Mov

Mov

Network
In-LinkNetwork

In-Link

Network
In-Link

Network
In-Link

vc0
vc1

vc2
vc3

From
Core

Network
Out-Link

Network
Out-Link

Network
Out-Link

Network
Out-Link

To Core

Route compute

SW Allocator

VC Allocator

Credit
Management

Unit

Bubble
Movement Unit

Bindu Bus
Arbiter

Bindu
Bus

U-tu
rn

crossbar

vc0

vc3
vc2
vc1
vc0

vc0
vc3
vc2
vc1

vc3
vc2
vc1 vc0

vc
3

vc
2

vc
1

Mov

Mov

Mov

Mov

Network
In-LinkNetwork

In-Link

Network
In-Link

Network
In-Link

vc0
vc1

vc2
vc3

From
Core

Network
Out-Link

Network
Out-Link

Network
Out-Link

Network
Out-Link

To Core

Route compute

SW Allocator

VC Allocator

Credit
Management

Unit

Bubble
Movement Unit

Bindu Bus
Arbiter

Bindu
Bus

U-tu
rn

crossbar

Intra-router Bindu MovementInter-router Bindu Movement
(a) (b)

P

B

BINDU-Router BINDU-Router

Figure 6.4: Router micro-architecture of BINDU. Additional components over baseline
router are highlighted

6.4 Router micro-architecture

Bindu-bus: This is a bus connecting all the input ports, and is used to facilitate movement

of the Bindu between VC-0 of the input ports (by moving the packet into the VC occupied

by Bindu previously). A Bus suffices since only one Bindu can move per cycle; if multiple

Bindus are concurrently present at a router, their period is skewed such that they do not

contend for the bus in the same cycle.

Credit management unit: The upstream router is agnostic to the fact that there is a

Bindu or an actual packet sitting at the downstream router. This implies that whenever

Bindu replaces a packet in the router, there is no need to send updated credit signals to

upstream routers involved. However, when Bindu replaces an empty slot, within the router,

then both upstream routers, the one connected to the input port where Bindu was originally

present and the other connected to the input port which originally had an empty slot, needs

to be updated with credits accordingly.

Bindu movement unit: It is responsible for the overall movement of Bindu within

116

Fault random
location for

12-fault

Fault random
location for

8-fault

Fault random
location for

4-fault

Fault random
location for

1-fault

static Irregular 8x8 Mesh
created due to faults

56 57 58 59 60 61 62 63

48 49 50 51 52 53 54 55

40 41 42 43 44 45 46 47

32 33 34 35 36 37 38 39

24 25 26 27 28 29 30 31

16 17 18 19 20 21 22 23

8 9 10 11 12 13 14 15

0 1 2 3 4 5 6 7

Figure 6.5: The figure shows irregular topologies, created out of a regular mesh. Faults in
the network are shown as link failures at a random location, distributed randomly through-
out the topology

117

the router until it leaves the router at a specific period. It comprises of two registers -

one holding the Bindu movement period, and the other encoding its path within the router,

including the output port connecting to the next router to route the Bindu to.

Multi-flit packets with Virtual Cut-Through (VCT) Routers. If the head-flit is

present in VC-0 and it is the turn of this VC to turn into a Bindu, the VC is locked till

the entire packet arrives and is not allowed to take part in switch arbitration. Once the en-

tire packet arrives, transfer of this packet into the VC previously occupied by the Bindu is

performed. The intra router Bindu period is chosen appropriately at design time such that

entire packet can arrive and move before the next movement. If the head flit has already

left, then the packet is allowed to naturally drain into its downstream VC without moving

into the Bindu VC.

Multi-flit packets with Wormhole Routers: BINDU, as defined so far, works if VC-0

in each router is VCT, i.e., sized to hold complete packets (while other VCs can be smaller).

To implement BINDU in wormhole routers, we would need to support packet truncation

within VC-0, like prior works in deflection routing [42].

The router micro-architecture is shown in Figure 6.4. We discuss the key modules

incorporated to facilitate Bindu movement:

Bindu Movement Example. We explain the Bindu movement within and across the

router, with the example shown in Figure 6.4.

1. A Bindu enters the router from the North input port - this effectively means that a

packet sitting at the North input port leaves the router to go sit in the South input port

of the upstream router, in place of the Bindu, as shown in Figure 6.4(a).

2. The Bubble Movement Unit encodes the period and the route of the Bindu within

this router. In the example in Figure 6.4(b), it moves the Bindu from the North to the

East input port, via the Bindu bus. This step is similar to BBR [8].

3. The Bindu will traverse all input ports sequentially. The last stop of the Bindu will

118

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

fault-0 fault-1 fault-4

fault-8 fault-12

Escape VC BBR BINDU-1SPIN

(a) Uniform Random

15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12 0.14

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

fault-0 fault-1 fault-4

fault-8 fault-12

Escape VC BBR BINDU-1SPIN

(b) Transpose

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.04 0.06 0.08 0.1 0.12

Av
er

ag
e p

ac
ke

t l
at

en
cy

Injection rate (packets injected/node/cycle)

fault-0 fault-1 fault-4

fault-8 fault-12

Escape VC BBR BINDU-1SPIN

(c) Shuffle

Figure 6.6: Performance of BINDU compared against Deadlock avoidance, Deadlock re-
covery and BBR for synthetic traffic: Uniform-Random, Transpose and Shuffle. Evaluated
for vc=2, 64 node irregular topology derived from 8x8 Mesh.

119

10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e

pa
ck

et
 la

te
nc

y

Injection rate (packets injected/node/cycle)

10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42

Av
er

ag
e

pa
ck

et
 la

te
nc

y

Injection rate (packets injected/node/cycle)

Torus
Transpose
VC-2

Torus
Transpose
VC-4

CBS BBR BINDU-1 BINDU-32 BINDU-64

Figure 6.7: The graph compares the performance of BINDU with num Bindu=1, 32, 64 re-
spectively with Critical Bubble Scheme and BBR. Graphs are for regular 8x8 Torus topol-
ogy.

be the input port, whose corresponding output port is connected to the next router in

Bindu’s path.

4. The Bindu will use the crossbar to traverse to the neighbor by moving a packet (or an

empty slot) at VC-0 of the corresponding input port from the neighbor to the current

location occupied by Bindu, as shown in Figure 6.4(a).

5. This whole process is now repeated at the neighboring router.

Implementation Cost. The hardware overhead of BINDU comes because of addition

of Bindu-bus, and Bindu Movement Unit. We used DSENT [73] to estimate the area and

power overhead. Area overhead comes around 6% and static power overhead is 5% over

baseline router with VC=4.

Implementation choice for Bindu: In this work, we proposed to embed Bindu-path

inside the router, and Bindu moves through the network along that specified path. An-

other implementation choice could be to think of Bindu as a dummy packet which moves

throughout the network in a cyclic manner and never gets consumed. We then could have

the path for Bindu embedded inside the Bindu itself. This would further simplify the router

micro-architecture of BINDU, as each router would then only need to read the content of

Bindu to know where to route it next. It would also be easier to reconfigure Bindu’s path

dynamically by updating the route within Bindu based on some metric. However, the flex-

ibility and reconfigurability comes at the cost of scalability; encoding the Bindu-path will

120

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

lo
ad

 la
te

nc
y Fault-0 Fault-1 Fault-4

Fault-8

VC=2 VC=4

num-Bindu num-Bindu

num-Bindu

num-Bindu

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y Fault-12

num-Bindu

1 2 3 4 8 12 16 32 64 1 2 3 4 8 12 16 32 64 1 2 3 4 8 12 16 32 64

1 2 3 4 8 12 16 32 64 1 2 3 4 8 12 16 32 64

(a) Uniform Random

15.5

15.7

15.9

16.1

16.3

Lo
w

lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y

num-Bindu

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y

15.5

15.7

15.9

16.1

16.3

Lo
w

 lo
ad

 la
te

nc
y Fault-0 Fault-1 Fault-4

Fault-8

VC=2 VC=4

num-Bindu num-Bindu num-Bindu

num-Bindu

Fault-12

1 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 64

1 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 64

(b) Transpose

Figure 6.8: Graphs are for Uniform Random and Transpose traffic pattern as number of
Bindus increase from 1 to 64 in 8x8 irregular Mesh topologies with given fault. Graph
shows the effect of low-load latency. We observe that the effect of number of bubbles on
performance, is more for the router with fewer VCs compared to the router with more VCs
per input port. All Bindus in BINDU are confined to VC-0 of each input port.

need log(N)× log(r)× r-bits (where N is the number of nodes, and r is the router radix),

which can exceed typical flit sizes for large networks.

Implementation of Bindu-Path: There could also be multiple ways in which Bindu

path can be implemented as shown in Figure 6.1. These paths would have different network-

performance sensitivity for different irregular topologies. All these design choices are in-

teresting to explore in future work, we, however, do not present these studies in this paper

in the interest of space. We assume a snake-like structure for regular topologies, and a tree

for irregular topologies.

121

Table 6.2: Qualitative Comparisons of CBS, BBR and BINDU

CBS [39] BBR [8] BINDU[9]

Bubble Im-
plementation

Bubble is an
empty VC

Bubble is empty
VC

Bindu is reserved
VC or dummy
packet

Movement
Bubble moves
naturally as the
packet moves

Random pro-
active bubble
movement within
router

Proactive Bindu
movement as per
Bindu-path.

Minimum
Empty
Buffers

one bubble per
ring dimension.
8x8 torus net-
work requires 32
bubbles

one bubble per
router. 8x8 torus
requires 64 bub-
bles

one Bindu in the
entire network.
8x8 torus requires
one Bindu

Topologies
closed loop/ring
topologies, for
example Torus

Works for any ar-
bitrary topology

Works for any ar-
bitrary topology

Routing
restriction

uses dimensional
order routing in
the VC that con-
tains the bubble

uses minimal
random adaptive
routing

BINDU uses min-
imal random adap-
tive routing

Misrouting No packet gets
mis-routed

in-frequent mis-
route during bub-
ble exchange

At most one
packet per Bindu
movement

Flexibility not flexible not flexible
flexible in terms of
number of Bindus
and their path

Reconfigurable not reconfig-
urable

not reconfig-
urable

dynamically
reconfigurable

6.4.1 Comparison with CBS and BBR

Here we delineate BINDU from two notable works which use bubble to provide deadlock-

freedom to the network. We paraphrase the main points in Table 6.2. BBR can be viewed

as Bindu-64.

6.5 Evaluations

6.5.1 Methodology

BINDU is evaluated using gem5 [7] with the Garnet2.0 [59] network model and the Ruby

memory model. We use DSENT [73] to model power and area for a 11 nm process. Ta-

ble 6.3 lists all key configuration parameters for our evaluation.

122

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sa
t.

th
ro

ug
hp

ut

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sa
t.

th
ro

ug
hp

ut

0

0.05
0.1

0.15
0.2

0.25
0.3

0.35

Sa
t.

th
ro

ug
hp

ut

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sa
t.

th
ro

ug
hp

ut

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Sa
t.

th
ro

ug
hp

ut

num-Bindu num-Bindu

num-Bindu num-Bindu

Fault-1 Fault-4

Fault-8 Fault-12
VC=2 VC=4

Fault-0

num-Bindu
1 2 3 4 8 12 16 32 64 1 2 3 4 8 12 16 32 64 1 2 3 4 8 12 16 32 64

1 2 3 4 8 12 16 32 64 1 2 3 4 8 12 16 32 64

(a) Uniform Random

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t.

th
ro

ug
hp

ut

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t.

th
ro

ug
hp

ut

0

0.05

0.1

0.15

0.2

0.25

0.3
Sa

t.
th

ro
ug

hp
ut

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t.

th
ro

ug
hp

ut

0

0.05

0.1

0.15

0.2

0.25

0.3

Sa
t.

th
ro

ug
hp

ut

num-Bindu num-Bindu num-Bindu

num-Bindu num-Bindu

Fault-1 Fault-4

Fault-8 Fault-12
VC=2 VC=4

Fault-0

1 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 64

1 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 641 2 3 4 8 12 16 32 64

(b) Transpose

Figure 6.9: Graphs are for Uniform Random and Transpose traffic pattern as number of
Bindus increase from 1 to 64 in 8x8 irregular Mesh topologies with given fault. Graph
shows the effect of saturation throughput. We observe that with increase in number of
Bindus, saturation throughput decreases. Bindu-64 is similar to BBR

123

Table 6.3: Key Simulation Parameters.

Real application simulation parameters

Core 64 cores and RISCV ISA (Ligra),
1GHz
16 cores and x86 ISA (Parsec3.0),
1GHz

L1 Cache Private, 16KB Ins. + 16KB Data,
4-way set assoc.

Last Level Cache Shared, distributed, 64KB,
8-way set assoc.

Cache Block Size 64B
Cache Coherence MESI Directory (Ligra) Vnets=5

MOESI hammer (Parsec3.0)
Vnets=6

Target Networks

Topology irregular 8x8 Mesh (Ligra and Syn-
thetic workloads)
irregular 4x4 Mesh (Parsec3.0)

Router latency 1-cycle
Num VCs 1, 2 and 4

Buffer Organization Virtual Cut Through. Single packet
per VC

Link Bandwidth 128 bits/cycle

Deadlock Avoidance Escape VC [74] with Up-Down [25]
within Esc-VC

Deadlock Recovery SPIN [41]

Bubble based CBS [39]; BBR [8]; BINDU-k (k:
num of Bindus)

Baseline Networks. We select state-of-the-art baseline deadlock-free networks to com-

pare against BINDU. From deadlock-avoidance, we use escape VCs (which are known

to perform better than turn-restriction schemes [38, 41]). From deadlock-resolution, we

choose SPIN [41], which has been shown to performs better than Static Bubble [38]. From

bubble-based, we choose BBR [8] and CBS [39]. BBR works for arbitrary topologies while

CBS only for Torii.

Benchmarks. Both real applications and synthetic traffic are used to evaluate BINDU.

Applications are drawn from the Ligra benchmark suites [75] and from Parsec3.0 [33] .

For synthetic traffic, we focus on uniform random, transpose and shuffle traffic with the

mix of 1-flit and 5-flit packet size; results for other traffic patterns are qualitatively similar.

The simulator is warmed-up for 1000 cycles, thereafter network statistics are collected by

124

injected fixed number of tagged packets by each node in the system. Simulation completes

when all the tagged packets are received. We use an 8×8 irregular network for Ligra and

synthetic traffic. Ligra applications have been simulated in syscall-emulation (SE) mode

of gem5 while Parsec3.0 applications are simulated on irregular 4x4 network using full

system simulation mode in gem5.

Topologies. BINDU performance is evaluated on fault-free and faulty 2D mesh net-

works as well as 2D Torus network topology.To create irregular topologies from 2D mesh,

faults are injected randomly into the network while network connectivity is maintained as

shown in Figure 6.5. For the 8×8 network, we consider a range of faulty links up to 12 in

2D mesh.

6.5.2 Performance

Irregular topologies. Figure 6.6 shows the performance comparison of BINDU with other

state of the art deadlock-freedom schemes.

for irregular 2D 8x8 Mesh. Key-takeaway from this performance graph is that except

regular 2D Mesh, BINDU performs comparably to the state of the art solutions. In fact, un-

der certain traffic pattern for example uniform random and shuffle, BINDU performs better

than state-of-the-art. On average, we see 15% improvement over saturation throughput in

synthetic traffic pattern using BINDU.

Bubble-based Schemes. Figure 6.7 compares the performance of state-of-the-art bub-

ble based deadlock-freedom techniques with BINDU for regular 8x8 Torus topology. Since

CBS has 32, and BBR has 64 bubbles, we also contrast against iso-Bindu configurations.

BINDU provides up to 2.2× higher throughput. Also, the performance of BINDU de-

creases as the number of Bindus increases in the topology. BBR can be approximately

considered as Bindu-64 as now each router has a Bindu/bubble. Therefore, BBR’s perfor-

mance can be approximated with Bindu-64, and Bindu-32 lies between Bindu-1 and BBR.

We observe 35% throughput improvement for VC=2 and 15% higher throughput for VC=4

125

0.9

1.1

1.3

1.5

1.7

1.9

0.02 0.06 0.1 0.14 0.18 0.22 0.26 0.3 0.34
Injection rate (packets received/node/cycle)

0
0.02
0.04
0.06
0.08

0.1
0.12
0.14
0.16
0.18

1 10 20 30 40 50 60 70 80 90 100

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

Bindu Movement Period

fault-0 fault-4 fault-8 fault-12

eVC
SPIN
BBR
B-1_P-1
B-1_P-32
B-1_P-64

B-1_P-512
B-1_P-1024

Oscillates between 2 to 14

(a) N
or

m
al

iz
ed

 e
xt

ra
 li

nk
 tr

av
er

sa
l p

er
 p

ac
ke

t

(b)

Figure 6.10: (a)Sensitivity of saturation throughput with increase in inter-router Bindu
movement period of one Bindu for uniform random traffic. These results are for irregular
8x8 Mesh with VC=2.
(b)Uniform-random traffic, VC=2, with Fault-1. The graph shows the extra link traversal
over the baseline using minimal deadlock-free routing. Here B-1 P-X means Bindu-1 with
‘X’ as Bindu Movement Period

with BINDU-1 compared to BBR.

6.5.3 Sensitivity studies

Number of bubbles

Figure 6.8 shows the sweep of low load latency as the number of Bindus increases in the

topology from one to 64.

In general, we see low load latency increases with an increase in the number of Bindus,

both for regular as well as irregular 8x8 Mesh topology. Effect on low load latency is more

prominent for VC=2 than VC=4. Also, sensitivity reduces for higher fragmented topology

(for example fault-12) compared to lower fragmented topology (for example fault-1).

Similar trends are shown by saturation throughput as the number of Bindus increases,

saturation throughput decreases, for both regular and irregular Mesh topology in Figure 6.9.

This happens mainly because of two reasons. Firstly, as the number of Bindus increases,

more packets will be misrouted in the network. Secondly, Bindus cannot be consumed

therefore they put indirect restrictions on the number of packets that can be injected into the

network. Since Bindu only stays in VC-0, we see less sensitivity in saturation throughput

when there are many VCs (for example VC=4) compared to when there are fewer VCs (for

126

0

5

10

15

20

25

BC BFS
BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average
Av

er
ag

e
Pa

ck
et

 La
te

nc
y

0

50

100

150

200

250

Barnes

Bodytra
ck

Canneal
FFT

F'a
nim

ate
FM

M
Lu_cb

Lu_ncb

Ocean_cp
Radix

Volre
nd

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y
0

5

10

15

20

25

BC
BFS

BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y

0

50

100

150

200

250

Barnes

Bodytra
ck

Canneal
FFT

F'a
nim

ate
FM

M
Lu_cb

Lu_ncb

Ocean_cp
Radix

Volre
nd

Average

Av
er

ag
e

Pa
ck

et
 La

te
nc

y
escapeVC BBR BINDU-1SPIN

Fault-0; VC/Vnet=2 Fault-8; VC/Vnet=2

Figure 6.11: Packet latency from real workloads BINDU when compared to other state of
the art schemes. Upper row is for Parsec3.0[33] workloads and lower row shows result for
Ligra[75] workloads

example VC=2).

Inter-router Bindu movement period sweep

Figure 6.10-(a) shows the sensitivity of saturation throughput with increase in inter-router

Bindu period. The experiment is performed for uniform random traffic pattern with VC=2,

with one Bindu in the whole network. We observe decrease in saturation throughput with

increase in inter-router Bindu-period. This happens because it takes longer for the Bindu

to reach to the packets stuck in deadlock and free them from deadlock.

Energy Overhead

Figure 6.10-(b) shows the energy overhead for various schemes, in the form of extra link-

traversal per packet, over the baseline assuming ideal minimal routing without any over-

head for an irregular mesh with one fault. For escape VC the extra link traversal comes be-

127

0
0.2
0.4
0.6

0.8
1

1.2

BC
BFS

BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average
No

rm
al

ize
d

ru
nt

im
e

0

0.2

0.4

0.6
0.8

1

1.2

BC BFS
BFSCC

Components
KCore MIS

PageRank
Radii

Tria
ngle

Bellm
anFord CF

Average

No
rm

al
ize

d
ru

nt
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes

Bodytra
ck

Canneal
FF

T

F'a
nim

ate
FM

M
Lu

_cb

Lu
_ncb

Oce
an_cp

Radix

Volre
nd

Average

No
rm

al
ize

d
ru

nt
im

e

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Barnes

Bodytra
ck

Canneal
FF

T

F'a
nim

ate
FM

M
Lu

_cb

Lu
_ncb

Oce
an_cp

Radix

Volre
nd

Average

N
or

m
al

ize
d

ru
nt

im
e

escapeVC BBR BINDU-1SPIN

Fault-0; VC/Vnet=2 Fault-8; VC/Vnet=2

Figure 6.12: Normalized runtime improvement from real workloads with BINDU when
compared to other state of the art schemes. Upper row is for Parsec3.0[33] workloads and
lower row shows result for Ligra[75] workloads

cause of the non-minimal Up-Down [25] path a packet takes to reach its destination within

the Escape VC. We observe higher overhead at lower injection rate because the fewer the

packets in the network, the more sensitive they are to non-minimal path of escape VC.

SPIN’s [41] overhead over ideal minimal routing is because of probes used for detecting

deadlock, especially at higher loads due to increased forking at intermediate routers. BBR’s

[8] link traversal overhead is because of increased bubble-exchange at high injection rate.

BINDU’s extra link traversal over ideal minimal routing is because at higher injection rate,

there are more packets in the network, hence the likelihood of Bindu replacing a packet,

as it moves along its path, increases. In summary, we can see that the additional energy

expended by the misroutes due to Bindu movement is negligible at low-loads, and less than

10% post saturation (even with an aggressive Bindu movement period of 1), which is either

equal to or much lower than other state-of-the-art solutions.

128

6.5.4 Real application results

Figure 6.11 shows the packet latency improvement for Parsec3.0[33] and LIGRA[75] bench-

marks respectively. This culminates into 6% average improvement for fault-0 and 7% av-

erage improvement in packet latency for fault-8 in 4x4 mesh respectively.

Figure 6.12 shows the normalized runtime improvement for Parsec3.0[33] and LIGRA[75]

applications respectively. There is overall around 5% improvement of BINDU over other

schemes.

6.6 Discussion

BINDU shows that unlike BBR where bubble in each router is used to unblock the input

port involved in deadlock, we can have one global bubble which would visit each input

port of the router cyclically. There were two components to the motion of Bindu one is

inter-router bindu period another is intra-router bindu period, both periods determine the

frequency of movement of packets across routers and within the router across input ports.

Considering the routing deadlocks as rare event we see performance improvements of

Bindu over BBR which conservative put bubble within each input port of the router.

6.6.1 Using CDG for bindu-path

In BINDU not much attention is given to bindu-path, except that it visits all input ports of

the router and cyclic in nature. We believe there is room for improvement if we are selective

in choosing the bindu-path. We believe CDG (subsection 3.1.1) is a good candidate for

bindu path for two reasons:

• Cycles in CDG suggests that potential deadlock cycles in the network. In Bindu we

showed that movement of bindu gives a spin-effect[41] to the packets involved in

deadlock. If we move bindu along CDG of the network, then we can achieve higher

performance.

129

• CDG naturally has the features of Bindu-path, as it visits all the input port of the

router. Therefore, evaluating BINDU with CDG as Bindu-path could give us more

insights of this scheme.

6.6.2 BINDU to resolve Protocol level deadlocks

Finally, we believe that BINDU can be extended beyond its current form of resolving rout-

ing level deadlock to resolving both routing and protocol level deadlocks. Protocol level

deadlocks (subsection 2.15.2) arise because all the finite buffers of Network on Chip are

occupied by packets from non-terminating message classes example: request packets, Ack

packets. This results in packets from terminating message class, example response packet,

not able to make forward progress to reach their destination. With Bindu, if bindu-path is

chosen dynamically in such a way that it forces the response packets to reach its destina-

tion then protocol level deadlock can be resolved. We believe it would be interesting to

study the performance of new BINDU technique which resolves both routing and protocol

deadlocks.

In next set of chapters, we will see that we can resolve routing level deadlocks without

bubbles. Particularly, we will talk about another subactive deadlock freedom mechanism

called as DRAIN: Deadlock Removal for Arbitrary Irregular Networks. The idea is similar

to BINDU as DRAIN also has a virtual-ring embedded in the network, called as drain-path

(similar to bindu-path) instead of moving a bubble (bindu) all packets present on the drain-

path move simultaneously. We will discuss it in more detail in next chapter. One Salient

feature of DRAIN is that it resolves routing as well as protocol level deadlock.

6.7 Chapter Summary

BINDU is the first work, to the best of our knowledge, to demonstrate deadlock freedom

by reserving a single bubble (empty VC) in the entire network, and pro-actively moving it

through all routers and all input ports. BINDU requires no deadlock-detection (unlike reac-

130

tive schemes) and requires no turn-restrictions or escape VCs (unlike proactive schemes).

Table 6.1 compares BINDU with prior proactive, reactive and subactive schemes. BINDU

is topology-agnostic and provides around 15% average throughput improvement over state-

of-the-art techniques in synthetic traffic, and around 7% improvement on an average run-

time of real applications. This makes BINDU an effective solution to implement in irregular

network topologies to guarantee deadlock-freedom.

131

CHAPTER 7

DEADLOCK REMOVAL FOR ARBITRARY IRREGULAR NETWORKS

(DRAIN)

Correctness is a first-order concern in the design of computer systems. For multiproces-

sors, a primary correctness concern is the deadlock-free operation of the network and its

coherence protocol; furthermore, we must guarantee the continued correctness of the net-

work in the face of increasing faults. Designing for deadlock freedom is expensive. Prior

solutions either sacrifice performance or power efficiency to proactively avoid deadlocks or

impose high hardware complexity to reactively resolve deadlocks as they occur. However,

the precise confluence of events that lead to deadlocks is so rare that minimal resources and

time should be spent to ensure deadlock freedom. To that end, we propose DRAIN, a sub-

active approach to remove potential deadlocks without needing to explicitly detect or avoid

them. We simply let deadlocks happen and periodically drain (i.e., force the movement of)

packets in the network that may be involved in a cyclic dependency. As deadlocks are a

rare occurrence, draining can be performed infrequently and at low cost. Unlike prior solu-

tions, DRAIN eliminates not only routing-level but also protocol-level deadlocks without

the need for expensive virtual networks. DRAIN dramatically simplifies deadlock freedom

for irregular topologies and networks that are prone to wear-related faults.

DRAIN is next subactive technique after BINDU, and provides deadlock freedom by

moving all packets in the network obliviously over pre-defined path. Unlike BINDU, it

does not require bubble to move one packet at a time, instead it moves the packets on

the pre-defined path all at once. Table 7.1 contrasts DRAIN against the prior work and

subactive schemes presented so far.

132

Table 7.1: Summary Table of Qualitative Comparison of Deadlock Freedom
Mechanisms. P: Proactive, R: Reactive. S: Subactive.

Techniques Full Path
Diversity

No Detect
deadlock

No Mis-
route

No Extra
Buffers

Routing
deadlock
freedom

Protocol
deadlock
freedom

Dally’s the-
ory/Acyclic
CDG (P) [26]

✗ ✓ ✓ ✓ ✓ ✗

Duato’s the-
ory/Escape
VC (P) [52]

✗* ✓ ✓ ✗ ✓ ✗

Bubble [37,
50] (P)

✓ ✓ ✗ ✗ ✓ ✓+

Deflection
(P) [42]

✗** ✓ ✗ ✓ ✓ ✓

Deadlock
Buffers (R)
[49, 47, 65,
38]

✓ ✗ ✓ ✗*** ✓ ✓***

Coordination
(R) [41]

✓ ✗ ✓ ✗**** ✓ ✗

BBR (S) [8] ✓ ✓ ✓++ ✓ ✓ ✗

BINDU (S)
[9]

✓ ✓ ✗ ✓ ✓ ✗

DRAIN (S)
[10]

✓ ✓ ✗ ✓ ✓ ✓

* Within escape VCs: limited path diversity + requires topology information for escape
path.
**At low-loads, full path diversity is available. But at medium-high loads, packets cannot
control the directions or paths along with they are deflected.
***DISHA [47] uses timeout counters present at each input port to choose a packet to
eject from the network. It requires a set of extra buffers to route the packet involved
in deadlock. Some variations of DISHA, such as mDISHA [49] provide protocol-level
deadlock freedom
****SPIN[41] requires a buffer in each router to hold the dynamic deadlock path over
which packets involved in deadlock would move synchronously.
+ Bubble Coloring [50] provides protocol-level deadlock freedom but involves non-
minimal path traversal.
++ BBR provides limited misrouting of packet because of Bubble Exchange subsec-
tion 5.3.1

7.1 DRAIN

This section describes the design of our DRAIN architecture, from theory to implementa-

tion. 133

Theory. The premise behind DRAIN is that routing-level and protocol-level deadlocks

fundamentally need neither be detected nor strictly avoided; they just need to be subactively

removed. Deadlocks are so rare that the cheapest solution is to simply let them happen (if

ever) and periodically and obliviously drain resources in the network that may be in a

deadlock. Even if no deadlock exists, correctness is maintained; draining would merely

incur an infrequent and minimal performance overhead.

Analogy. Consider an analogy to street sweepers: periodically, sweepers will traverse

the city streets along a pre-defined route to clear out leaves and other debris. This sweep is

executed regardless of whether it is needed; fall may come late and the sweepers do their

cleaning prior to the majority of leaves falling or fall may come early and the sweepers

effectively clear away accumulated debris. DRAIN operates similarly, periodic draining of

packets will occur regardless of need (ie., deadlock); ideally, these drains will coincide with

the occurrence of an actual deadlock. Should the draining occur just prior to a deadlock,

that deadlock will persist until the next scheduled draining.

Implementation Overview. Figures 3.11d and 3.15c show a high-level overview of

DRAIN. Draining can be performed by any operation that 1) can eliminate a deadlock

among packets if one exists, and 2) does not hurt correctness if no deadlock exists. In

DRAIN, we employ a very low-cost draining mechanism that is inspired by the forced

movement introduced in SPIN [41] yet avoids its complexity. Conventionally packets in a

deadlock cannot move forward until they have observed that the packets in front of them

have moved forward. In DRAIN, we periodically drain the network: we force all packets

to move in a predetermined cyclic path (drain path). This unhinges any deadlocked packets

and gives them the opportunity to eventually exit the deadlock cycle—by either making a

turn or ejecting from the network—thus eliminating the deadlock. DRAIN does not need

to globally coordinate the deadlocked packets via complex probe messages at runtime (as

SPIN does, Figure 3.11c). Instead, DRAIN determines, offline, a cyclic path through the

entire network that covers all links. Then routers locally drain the packets in their VC

134

buffers along this path, at preset periods at runtime (drain windows), even if no deadlock

exists. Since both when to drain (i.e., drain window) and where to drain (i.e., drain path) are

statically predetermined, DRAIN incurs very low hardware complexity. Though draining

may misroute any packets currently in the VCs, misrouting does not hurt correctness. As

our results demonstrate, misroutes are sufficiently infrequent that they have no significant

impact on performance.

Routing-Level and Protocol-Level Deadlocks. DRAIN guarantees both routing-level

and protocol-level deadlock freedom simultaneously. They share the same hardware im-

plementation. If a cyclic dependence exists in the network, regardless of whether the pack-

ets belong to the same message class or different classes, the dependence is guaranteed to

break eventually via periodically forcing packets to move.

Before describing the details of the architecture, we first state our baseline assumptions

(Section 7.1.1). We then describe the two key components of DRAIN:

• An offline algorithm that finds a drain path composed of all links in the network

(Section 7.1.2).

• A low-cost router architecture that periodically drains packets along this path (Sec-

tion 7.1.3).

We conclude this section with the necessary proofs (Section 7.2) and a walk-through ex-

ample (Section 7.2.5).

7.1.1 Assumptions and Definitions

We make three assumptions about the topology, which are commonly found in networks:

1. All routers are reachable by all other routers, even in the presence of faults. In other

words, the network is connected, and all source-destination pairs are possible. This

is a typical assumption since disconnected topologies serve little value in real-world

multiprocessors.

135

2. All routers are connected via bidirectional links (i.e., two opposing unidirectional

links). We find that this is true for most topologies. If a single unidirectional link

becomes faulty, we assume that both opposing links (and their VC buffers) are dis-

abled.

3. All turns (including U-turns) are possible in every router (i.e., every input port can

route to every output port). Networks that employ adaptive routing often already

provide this capability. Allowing for U-turns only requires modest changes to the

allocators and crossbars.

Any topology that holds all the above assumptions is guaranteed to have at least one

cycle (i.e., drain path) that spans all links. Since the network is connected, it is always

possible to construct a spanning tree that covers all bidirectional links in the topology.

Since each bidirectional link allows for an implicit turn to itself via a U-turn, the spanning

tree is equivalent to a unidirectional cycle that covers all links and all routers. This cycle is

equivalent to the path taken by a depth-first traversal through the spanning tree.

Definitions. We list key terminology:

• Drain: Force all packets currently in the network to take a specific turn, regardless

of whether or not they are in a deadlock.

• Drain Path: A cycle that covers all links in the network, specifying where each

drained packet must turn.

• Pre-Drain: Before draining, let any packets currently traversing a link complete.

• Drain Window: The predetermined time period reserved for all routers to perform

draining.

• Pre-Drain Window: The predetermined time period reserved for all routers to per-

form pre-draining. This immediately precedes the drain window.

136

• Epoch: The time between drain windows.

• Full Drain: Allows all packets in the network to traverse the whole topology and

eject out when they visit their destination router during traversal.

Protocol-Level Deadlocks. For protocol-level deadlocks, we make two additional as-

sumptions. First, each router’s injection and ejection ports use separate queues per message

class. This is typical in modern shared-memory multiprocessors, which have dedicated

queues for different coherence messages outside the network. Second, we assume that it is

not possible for packets of a single message class to occupy all buffers in the network, leav-

ing no space for other message classes. This is typical, since miss status handling registers

(MSHRs) are often few enough relative to the number of VCs in the network, bounding the

number of packets per message class. With these assumptions, if the network eliminates

protocol-level deadlocks within it, then the multiprocessor system is guaranteed to be free

of protocol-level deadlocks.

Draining Only Escape VCs. In networks with multiple VCs per port, we perform drain-

ing only on one VC and designate it as an escape VC. Every packet has an opportunity

to enter the escape VC, and if it does, it is no longer allowed to move to any non-escape

VCs. In contrast to typical escape VCs, our escape VC has no turn restrictions placed on

it. Other VCs do not need to be deadlock-free since DRAIN ensures that the escape VC is

deadlock-free.

7.1.2 Offline Algorithm

DRAIN ensures deadlock freedom by conservatively, periodically draining all escape VC

buffers in the network. Given any arbitrary network topology, the goal of our offline algo-

rithm is to find the drain path: a single cycle composed of all unidirectional links in the

network. This can be done offline and rerun whenever a link becomes faulty. At runtime,

during each drain window, all packets in the escape VCs are circulated along this path in

137

0

1

3

2

4 7

65

(a)

3

6

4

7 8

5

210

(b)

Figure 7.1: Sample outputs of our offline algorithm for (a) an irregular topology and (b) a
regular topology. Each arrow represents a unidirectional link in the drain path.

unison, for some number of hops. Fig. 7.1 shows example outputs of our algorithm for an

irregular topology and a regular topology. In the figures, each edge represents two opposing

unidirectional links. All unidirectional links in these topologies are covered by the drain

path found by our algorithm.

During each drain window, any packet currently in an escape VC buffer is forced to

make a turn following the path.

DRAIN supports irregular network topologies in the presence of faulty links. The input

topology is represented as a dependency graph G where each node is a unidirectional link in

the topology, and each directed edge is a turn between two unidirectional links. We denote

the set of all unidirectional links as L. A cycle in G is defined as a sequence of links l =

{l1, ..., ln} where li is connected to li+1 via a turn, and ln is connected to l1 via a turn. Only

elementary cycles need to be considered: an elementary cycle visits each link at most once.

Non-elementary cycles are impossible since a link can only transfer at most one packet at

a time. Our algorithm’s goal is to find a cycle C where l = L. We are guaranteed to find at

least one such cycle given our baseline assumptions in Section 7.1.1. Our implementation

builds upon the cycle-finding method proposed by Hawick and James [76], with complexity

O((V + E) × (C + 1)), where V , E and C are the number of vertices, edges and cycles

138

DRAIN RouterCrossbar Switch

VC allocator

switch allocator

route compute

VC0

VCn

input buffers

DRAIN
turn-table

epoch register

Credit
management

unit

do_drain

Credit freeze

in0

in1

in2

in3

out0

out1

out2

out3

in0 out1
in1 out3

in3 out2
in2 out0

do_pre-drain

Full-Drain
counter

decrement
== 0

do_full-drain

reset

to ’N
’

has epoch
reached?

fixed
offset

Figure 7.2: DRAIN router microarchitecture. The red modules are unique to DRAIN.

in G, respectively. This method employs a recursive tree search with efficient structures

for tracking vertex adjacency lists. We augment this to terminate early as soon as a single

cycle is found that covers all links in L. Since the algorithm only needs to be computed

whenever the topology changes (i.e., when a fault occurs, upon a system reboot), we expect

its runtime to be negligible to overall system performance.

7.1.3 Router Microarchitecture

Three changes are necessary to the router microarchitecture, highlighted in grey in Fig-

ure 7.2, each described in the following sections:

1. The epoch register for determining when it is time to pre-drain and drain.

2. The credit freeze for preventing new packets from allocating a VC during each pre-

drain.

139

3. The turn-table for determining where each input port turns during each drain.

When to Drain and Pre-Drain

We denote the pre-drain window and drain window as the time periods (i.e., clock cycles)

reserved for pre-draining and draining, respectively. Every drain window is preceded by

a short pre-drain window. When to pre-drain and drain is established ahead of time and

known by all routers in the network; these values are loaded at boot time and require no

subsequent global coordination. We add an epoch register per router that counts down

until the next pre-drain and drain window. As is common in chip multiprocessors, all

routers operate on the same clock; thus, all epoch registers are always in sync. This means

that routers do not need to communicate and coordinate their draining with each other.

This is an important advantage of DRAIN over reactive deadlock resolution mechanisms

(e.g., SPIN [41]) that must perform additional synchronization between routers to detect

and eliminate deadlocks. Such synchronization limits scalability and incurs significant

hardware complexity despite the fact that deadlocks very rarely arise.

Epoch. The time between drain windows (the epoch) is parameterizable and statically

chosen at design time. On one hand, draining more frequently incurs higher energy and

performance overhead since it drains (and potentially misroutes) packets more often even

if no deadlocks exist. On the other hand, draining too infrequently runs the risk of allowing

deadlocks to persist for longer periods and impeding system performance. We explore

these trade-offs in our evaluation.

How to Drain and Pre-Drain

We describe how the network operates and what architectural changes are necessary for

draining.

Pre-Drain Window. When the epoch counter reaches zero, each router initiates a pre-

drain. To implement pre-draining, credit allocation is frozen for all packets that are cur-

140

rently not in-flight (i.e., not traversing a link). This ensures that when the drain window

begins, no packets are in motion. The length of the pre-drain window is statically deter-

mined by the maximum packet size supported in the network (in our evaluation, this is 5

cycles).

Drain Window. At every drain window, the drain path specified by our offline algorithm

(Section 7.1.2) is drained. As shown in Figure 7.2, draining employs a turn-table per router

that overrides the VC and switch allocators. The turn-table stores the output port for which

each input port is bound, corresponding to the drain path. Since only one entry is needed

per input port, the turn-table is small and scales with the number of ports per router; the

table size does not increase as more routers are added to the network.

Turn-tables can be configured at boot time, which will permit a new drain path to be

computed by our offline algorithm in the event of a link fault.

When draining, the turn-table overrides the allocators and grants the packet exclusive

priority to turn onto the specified output port. Every packet currently occupying an escape

VC buffer is forced to move; they must follow the drain path by turning onto the next output

port in the cycle, specified by the turn-table. Draining moves each packet by one hop.1 If

packet arrives at its destination router during draining, it may immediately eject if there is

a free slot in the ejection queue.

Full Drain. To address livelock, DRAIN performs a full drain once every N drain win-

dows, for very large N (full drain counter in Figure 7.2). A full drain involves draining the

entire path such that each packet in an escape VC can visit all routers and may eject upon

arriving at its destination. This incurs a high performance overhead but only needs to be

done very rarely, since the likelihood of livelock is extremely low under typical operating

environments.
1While it is possible to perform more than one hop, we find this to always perform worse than the single

hop case

141

Discussion

Here we discuss how DRAIN eliminates the need for virtual networks and supports flit-

based flow control.

Virtual Networks. As discussed previously, the convention is to use virtual networks to

avoid protocol-level deadlocks, regardless of what mechanism is used to resolve routing-

level deadlocks. The number of virtual networks is dependent on the number of messages

classes in the system’s communication protocol. Each virtual network requires a distinct set

of VCs across all routers, so that the packets of one message class never block the packets

of any other message classes. This imposes a significant area and power overhead. Un-

like prior solutions for routing-level deadlocks, DRAIN provides protocol-level deadlock

freedom implicitly and does not require any virtual networks. This is due to two properties

of DRAIN: 1) the act of draining guarantees the movement of all packets along the drain

path, and 2) the drain path passes through all routers in the network by design. As a result,

DRAIN ensures that any packet of any message class will eventually have the opportunity

to reach its destination router, regardless of what other packets are in its way. A detailed

proof is provided in Section 7.2.3.

Flit-Based Flow Control. DRAIN is straightforward to implement on networks that use

packet-based flow control; we opt for virtual cut-through in our implementation. To support

flit-based flow control (e.g., wormhole), DRAIN leverages packet truncation mechanisms

from prior work [42, 45]. Since DRAIN forces flits to turn obliviously, packets may be

truncated by the draining; i.e., some flits are forced to turn in one direction while others

turn elsewhere. Routers are augmented with additional logic for generating a new packet

whenever a packet is truncated. Specifically, the router dynamically 1) encodes the down-

stream flit as a tail flit and 2) embeds header information to the upstream flit. Upon ejection,

all flits are buffered at the MSHRs of the cache controllers. When all flits have been ejected,

the full packet is reassembled and processed as usual. Unlike in prior work on deflection

142

0 1

43

1
4

3
0

2

5

6 7 8
5

4
7

8
Deadlock
cycle

0 1

43

1
4

3
0

2

5

6 7 8
5

4
7

8

Faulty link

Link in Drain path
Link in Drain path (no
packet present)

0

Packet
(destination 0)

(a) 2 deadlocks present in network (b) DRAIN window (c) Deadlocks resolved

77

7 Routed productively

8

8 Misrouted0 1

43

1

3

2

5

6 7 8

5

47

8

4

0

0

Figure 7.3: Step-by-step process of how DRAIN resolves deadlocks. (a) Packets have
routed into two deadlock cycles in a faulty network. (b) During the drain window, all
packets follow the predefined drain path in unison. (c) After draining for one hop, both
deadlocks are broken.

routing [42, 45], packets are rarely truncated, only once every drain window.

7.2 Correctness Proof of Deadlock Freedom

7.2.1 Assumption

In DRAIN we assume that the local port of the router has separate VNet for each message

class, this assumption makes sure that the response packet gets to enter the network irre-

spective of current occupancy of network buffers. However since Drain path only connects

the network to network input ports of the topology, if all the network buffers are filled

with request packets then response packet may not traverse the network as it will not get a

chance to hop on a network input port either using usual routing algorithm or DRAIN. This

is extremely unlikely situation. However, in this condition protocol deadlock will persist.

To resolve protocol level deadlock under this condition, we would extend drain path

to cover the local input port (or injection input port) of the routers. This would allow the

response packet at the local port of the router to occupy network input port of the router.

This is similar to the bindu movement as mentioned in subsection 6.2.2. To facilitate this

movement we would require a bus connecting the local input port with network input ports

of the router. We would augment DRAIN router microarchitecture similar to Figure 6.4.

143

Once the response packet hops on the network input port of the router from its local input

port during drain window, it is guaranteed to make forward progress either by following

usual routing algorithm if unblocked or via DRAIN if blocked.

7.2.2 Proof of Routing-Level Deadlock Freedom

If a routing-level deadlock is present in a network, there must exist some cyclic dependence

among packets in escape VC buffers along a set of links l. Deadlocks cannot exist in non-

escape VCs since these packets will always have an opportunity to move to an escape VC.

At every drain window, each escape VC in every link in l is drained, forcing any deadlocked

packet in it to move one hop in some direction. After moving all packets by one hop, the

deadlock will now be in one of two states: 1) the deadlock will either be broken, or 2) the

deadlock will remain. The deadlock is broken if at least one of the deadlocked packets now

has the opportunity to either eject from the network or turn away from the deadlock cycle

onto a minimal path to its destination. If the deadlock remains, then all of the deadlocked

packets in l must have moved one hop to a different link in l. Since the network is fully

reachable (an assumption we make in Section 7.1.1), for each deadlocked packet, there is

always at least one link in l that would arrive at the packet’s destination router and offer

the opportunity to eject. All deadlocked packets are guaranteed to eventually arrive at such

a link, since at each subsequent drain window, each packet will continue to move one hop

to the next link in l. Though each individual drain window is not guaranteed to break a

deadlock, all deadlocks are guaranteed to be broken eventually in a future drain window or

full drain (Section 7.1.3).

7.2.3 Proof of Protocol-Level Deadlock Freedom

If a protocol-level deadlock is present in a network, there must exist some packet pA of

some message class A that is blocking a packet pB of another message class B, and message

class A is dependent on message class B in the coherence protocol. If pB were to reach

144

its destination router, the deadlock would be broken since all ejection queues are separated

by message class, as stated in our assumptions (Section 7.1.1). The problem is that pA is

occupying a VC buffer that pB needs to reach its destination router. By design, at every

drain window, every packet must leave its current VC buffer and move in some direction, as

designated by the drain path. After moving all packets by one hop, pA and pB will now be in

one of two states: 1) pA and pB have moved in different directions, breaking the deadlock,

or 2) both pA and pB have moved in the same direction. Even though the deadlock may

still exist in the latter case, pB is now waiting in the next router of the drain path. Since

the drain path is guaranteed to pass through each router in the network at least once, pB is

guaranteed to eventually reach its destination router at some future drain window.

What if ejection queues are full? Though ejection queues may be full sometimes, they

will never be full due to deadlock since we assume separate ejection queues per message

class (Section 7.1.1). Thus, ejection queues are guaranteed to eventually free up. There

will always be at least one sink message class (e.g., response messages) that corresponds to

the end of a coherence transaction; the ejection queue of a sink message class can always

be consumed.

What if there are a burst of deadlocks? Though deadlocks occur with low probabilities,

there could be scenarios where packet injection leads to a burst of deadlocks one after the

other. Each drain will resolve one/more deadlocks as the packets get re-distributed. In some

cases, multiple drains may be required for the deadlocks to get resolved. The periodic full-

drain (Section 7.1.3) will guarantee that no deadlock will be persistent.

7.2.4 Livelock and Starvation Avoidance

If ejection ports are busy, blocked packets may require multiple drains before they eventu-

ally exit the network. Though highly unlikely, this has the risk of continuously misrouting

packets to the point where they never reach their destination. Both livelock and starva-

tion are avoided by full draining, as discussed in Section 7.1.3. Though a full drain incurs

145

a performance overhead, it is very infrequent; for the vast majority of applications, a full

drain is never needed. To further reduce the likelihood of livelock and starvation, we set the

epoch (i.e., time between drain windows) to be no less than the expected worst-case latency

of a packet in the network, which is proportional to the network diameter (i.e., the largest

number of hops between any pair of routers). This ensures that if a packet is misrouted, it

will have sufficient time to reach its final destination before the next drain window where it

may be misrouted again. For most cache-coherent multiprocessors, the worst-case packet

latency can be statically estimated because 1) the routers use well-known VC and switch

arbiters that are proven to be fair, and 2) the caches and directories have finite queues and

MSHRs, bounding the total number of in-flight transactions in the system.

7.2.5 Walk-Through Example

Figure 7.3 presents a walk-through example showing how DRAIN eliminates deadlocks.

The X indicates a faulty link in the network between routers 2 and 5. Figure 7.3a shows

two deadlock cycles. Packets are indicated by blue circles with their destinations specified;

e.g., Packet 0 at Router 3 needs to travel south to Router 0 but is stalled waiting for Packet

1. During the drain window (Figure 7.3b), all packets follow the drain path for one hop, as

highlighted by the magenta arrows. The complete drain path, as computed by our offline

algorithm (Section 7.1.2), is shown; the bolded arrows indicate the turns taken by the dead-

locked packets. Figure 7.3c shows the resulting location of the packets after one hop along

the drain path. For example, Packet 4 follows the drain path to Router 2; this is a misroute.

When the drain window ends, Packet 4 will need to travel back towards its destination.

Similarly, Packet 0 is also misrouted away from its destination to Router 6. Packets 1,

3, 5 and 7 are routed closer to their destination. Draining for one hop successfully breaks

both deadlocks. In some cases, more than one drain window may be required to clear all

deadlocks.

146

7.3 Methodology

DRAIN is evaluated using gem5 [7] with the Garnet2.0 [Garnet] network model and the

Ruby memory model. We use DSENT [73] to model power and area for a 11 nm process.

We simulate 16 and 64-core processors with a 2-level cache hierarchy. The cache architec-

ture uses 32KB and 64KB L1 instruction and data caches respectively and 2MB last level

cache (LLC) with MESI directory coherence protocol.

DRAIN is compared against escape VCs (with routing restrictions) [52] and SPIN [41].

While DRAIN only needs one virtual network, the baseline designs need multiple virtual

networks to prevent protocol-level deadlocks. In our evaluations, we provision each virtual

network with two VCs. Unless otherwise specified, our default implementation of DRAIN

uses 64K-cycle epochs and a single virtual network with two VCs; we refer to this configu-

ration as VN-1, VC-2. For completeness, we also evaluate DRAIN with 1) the same number

of virtual networks as the baselines (VN-3, VC-2) and 2) one virtual network with the same

number of total VCs as the baselines across all virtual networks (VN-1, VC-6). Note that

only the escape-VC baseline requires two VCs per virtual network; SPIN can operate with

a single VC per virtual network. However, for a fair performance comparison, we evaluate

our baselines with two VCs per virtual network.

DRAIN’s performance is evaluated on a fault-free 2D mesh and faulty irregular net-

works. Faults are injected randomly as link failures in the network topology while ensur-

ing connectivity is maintained. For the 4×4 network, we model 0 and 8 faulty links; for

the 8×8 network, we consider a range of faulty links up to 12. For each fault case, 10

different simulations with 10 randomly selected fault patterns of the given link failures are

chosen. These different patterns result in a wide range of irregular topologies. The results

presented are averaged across all 10 cases. In our results graphs, latency is shown in cycles

and saturation throughput is shown in packets received/node/cycle.

147

Table 7.2: Key Simulation Parameters.

Real application simulation parameters

Core 64 cores and RISCV ISA (LIGRA), 1GHz
16 cores and x86 ISA (PARSEC, SPLASH-2), 1 GHz

L1 Cache Private, 32KB Instruction + 64KB Data
4-way set associative

Last Level Cache
(LLC)

Shared, distributed, 2MB
8-way set associative

Cache Coherence MESI (LIGRA, PARSEC, SPLASH-2); VNet=3
Network parameters

Topology Irregular 8x8 Mesh (LIGRA and synthetic workloads)
Irregular 4x4 Mesh (PARSEC and SPLASH-2)

Routing Algorithm

DoR (Regular Mesh, Escape VC)
Up*/Down* (Irregular topologies, Escape VC)
Fully adaptive random (SPIN)
Fully adaptive random (DRAIN)

Router Latency 1-cycle

Virtual Network
3-VNet (Escape VC, SPIN)
1-VNet (DRAIN)
2 VCs/VNet

Buffer Organization Virtual Cut Through. Single packet per VC
Link Bandwidth 128 bits/cycle

Number of faults 0, 8 (LIGRA, PARSEC, SPLASH-2)
0, 1, 4, 8, 12 (Synthetic traffic)

7.3.1 Workloads

DRAIN is evaluated on both real-world applications and synthetic traffic. Applications

are drawn from the PARSEC, SPLASH-2 and Ligra benchmark suites [33, 32, 75]. For

synthetic traffic, we focus on uniform random and transpose traffic with a mix of 1-flit and

5-flit packet sizes; results for other traffic patterns are qualitatively similar. The simulator

is warmed up for 1000 cycles; thereafter network statistics are collected by injecting a

fixed number of tagged packets at each node in the system. Simulation completes when all

the tagged packets are ejected from the network. We use an 8×8 network for Ligra and

synthetic traffic and a 4×4 network for PARSEC and SPLASH-2.

148

0
0.2
0.4
0.6
0.8
1

Area Power

N
or

m
al

iz
ed

 R
ou

te
r

A
re

a
an

d
P

ow
er

Escape VC SPIN DRAIN

Figure 7.4: Router area and static power comparison.

7.4 Evaluation

We first compare DRAIN against prior proactive (escape VCs with up*/down* routing

and virtual networks) and reactive (SPIN) solutions in terms of area and power. We then

evaluate performance, under both synthetic traffic and real application execution. Finally

we sweep the key design-space parameters of DRAIN and quantify the impact on packet

tail latency, compared against the baselines.

7.4.1 Area and Power

In this section, we highlight the advantage of DRAIN in terms of area and power con-

sumption. Figure 7.4 shows both the router area and static power normalized to the base-

line escape VCs. The total router power includes that of the baseline hardware resources

(i.e., buffers and allocators) and the power consumption of the additional resources that are

required to handle deadlock. Escape VCs require an extra VC to proactively avoid dead-

locks, which leads to significant overhead. Both baseline systems (escape VCs and SPIN)

require multiple virtual networks to ensure protocol-level deadlock freedom. DRAIN, on

the other hand, inherently eliminates protocol-level deadlocks and thus improves router

power by about 77% compared to the baselines.

As shown in Figure 7.4, the simplified design of DRAIN yields almost 72% reduction

in area compared to escape VCs. The majority of the area reduction comes from the elim-

149

0

0.05

0.1

0.15

0.2

0 1 4 8 12

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

0

0.05

0.1

0.15

0.2

0 1 4 8 12

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

Escape VC SPIN DRAIN

Number of faults Number of faults
(a) (b)

Uniform Random Transpose

S
at

ur
at

io
n

Th
ro

ug
hp

ut

S
at

ur
at

io
n

Th
ro

ug
hp

ut0.20

0.15

0.01

0.05

0
0 1 4 8 12

0.20

0.15

0.01

0.05

0
0 1 4 8 12

Figure 7.5: Saturation throughput for synthetic traffic patterns with increasing number of
faults in an irregular 8×8 mesh.

0

5

10

15

20

0 1 4 8 12

Lo
w

 Lo
ad

 La
te

nc
y

0

5

10

15

20

0 1 4 8 12

Lo
w

 L
oa

d
La

te
nc

y

Escape VC SPIN DRAIN

Number of faults Number of faults
(a) (b)

Uniform Random Transpose

Lo
w

 L
oa

d
La

te
nc

y

Lo
w

 L
oa

d
La

te
nc

y

20
15
10
5
0

0 1 4 8 12

20
15
10
5
0

0 1 4 8 12

Figure 7.6: Low-load latency for synthetic traffic patterns with increasing number of faults
in an irregular 8×8 mesh.

ination of extra virtual networks; however, it is worth noting that SPIN imposes a ∼15%

overhead compared to a basic router design with dimension-order routing (DoR) to han-

dle the extra control complexity for global coordination. In our comparison, both escape

VC and SPIN have an equal number of virtual networks, but escape requires at least two

virtual channels per virtual network, while SPIN can work with a single virtual channel

per virtual network. DRAIN works with a single virtual network (as it is protocol level

deadlock-free) and a single virtual channel within the single virtual network. This yields

significant savings in router area and power with DRAIN.

Though our MESI protocol requires only three virtual networks, other coherence pro-

tocols may require even more; e.g., MOESI requires six virtual networks. In these cases,

the area and power savings of DRAIN would be even greater.

7.4.2 Performance

This section evaluates DRAIN’s performance compared to prior deadlock-freedom solu-

tions.

150

0

5

10

15

20

BC BFS
BFSC

C CF
KCore MIS

PageRank
Rad

ii

Tria
ngle

Averag
e

Av
er

ag
e

Pa
ck

et
 La

te
nc

y

0
0.2
0.4
0.6
0.8

1

BC BFS
BFSC

C CF
KCore MIS

Page
Rank

Rad
ii

Tria
ngle

Ave
rag

eNo
rm

al
ize

d
Ru

nt
im

e

0
0.2
0.4
0.6
0.8

1

BC
BFS

BFSC
C CF

KCore MIS

Page
Rank

Rad
ii

Tria
ngle

Ave
rag

e

No
rm

al
ize

d
Ru

nt
im

e

(a)

0

5

10

15

20

BC BFS
BFSC

C CF
KCore MIS

PageRank
Rad

ii

Tria
ngle

Averag
eAv

er
ag

e
Pa

ck
et

 La
te

nc
y

(b)

(c)

(d)

Fault-0

Fault-8

Fault-8

Fault-0

Escape VC (VN-3, VC-2) SPIN (VN-3, VC-2) DRAIN (VN-3, VC-2)

DRAIN (VN-1, VC-2)DRAIN (VN-1, VC-6)

Figure 7.7: Packet latency and runtime of LIGRA applications on an 8×8 mesh with 0 and
8 faults.

151

Synthetic Traffic.

Figure 7.5 shows the saturation throughput for DRAIN and the baseline designs with

increasing faults. Escape VCs yield the lowest throughput of the three techniques. The

routing restrictions on the escape VC significantly reduce performance for all packets re-

gardless of the low probability of deadlock. SPIN increases throughput by reacting to the

rare case of deadlock. DRAIN achieves the same throughput as SPIN for uniform ran-

dom traffic and slightly lower throughput for transpose traffic. In the event of a deadlock,

DRAIN may wait longer than SPIN to resolve the deadlock, since DRAIN is an oblivious

approach (i.e., it has no detection mechanism). SPIN uses a time-out of 1024 cycles, while

we evaluate DRAIN with an epoch of 64K cycles. With substantially lower complexity

than SPIN (Section 7.4.1), we achieve nearly equivalent performance.

Figure 7.6 compares the low-load packet latency for the three designs. DRAIN achieves

the same latency as SPIN and both techniques achieve better latency than escape VCs. The

escape VC with up*/down* routing forces non-minimal paths on the majority of packets

leading to higher hop counts. At low loads, we expect deadlock to be extremely rare; thus

DRAIN achieves equivalent low-load latency to SPIN. For all techniques, low-load latency

increases with increase in number of faults; faults reduce path diversity and some packets

must route non-minimally around faults for all three techniques.

Application Results. Figures 7.7 and 7.8 show the performance results of SPIN and

DRAIN, normalized against escape VCs on the Ligra and PARSEC workloads, respec-

tively. We evaluate on mesh networks with 0 and 8 faults. For the topology with 0 faults,

we configured the escape VCs to use minimal dimension-order routing while all other non-

escape VCs use fully adaptive routing. For 8 faults, we configured the escape VCs to use

non-minimal up*/down* routing, since DoR is not possible in the presence of failed links.

We evaluate three configurations of DRAIN: same number of virtual networks as the

baselines (VN-3, VC-2), one virtual network with the same number of total VCs as the

baselines (VN-1, VC-6) and the default configuration (VN-1, VC-2). In general, DRAIN

152

0
10
20
30
40
50

bla
cks

ch
oles

can
ne

al fft
fm

m
lu_cb rad

ix

sw
ap

tio
ns

Ave
rag

e

Av
g.

 P
ac

ke
t L

at
en

cy

(a)
Fault-0

0
10
20
30
40
50

blac
ksc

holes

can
neal fft

fm
m

lu_cb
radix

sw
aptio

ns

Averag
e

Av
g.

 P
ac

ke
t L

at
en

cy

(b)
Fault-8

Escape VC (VN-3, VC-2) SPIN (VN-3, VC-2) DRAIN (VN-3, VC-2)

DRAIN (VN-1, VC-2)DRAIN (VN-1, VC-6)
A

vg
. P

kt
. L

at
en

cy
A

vg
. P

kt
. L

at
en

cy

Figure 7.8: Packet latency of PARSEC and SPLASH-2 applications on a 4×4 mesh with 0
and 8 faults.

and SPIN show similar average performance on our applications. The average packet laten-

cies across these workloads, as shown in Figures 7.7a and 7.7b for Ligra and Figures 7.8a

and 7.8b for PARSEC, are fairly close between DRAIN and SPIN. In our default DRAIN

configuration (VN-1, VC-2), packet latency is higher since there are 1/3 less total VCs

than the baselines. Despite this, the application runtimes are not harmed, as shown in Fig-

ures 7.7c and 7.7d. Thus, DRAIN achieves the same performance as SPIN at ∼ 1/3 the

hardware cost (Figure 7.4).

7.4.3 Sensitivity Studies

This section explores DRAIN in greater detail.

Epoch. Figures 7.9a and 7.9b show the impact of varying the drain epoch from 16 to

64K cycles on low-load packet latency and saturation throughput, respectively. These ex-

periments are performed on uniform random traffic. In the extreme case of 16 cycles, the

network is continuously flushing the drain path, leading to poor throughput and latency

153

0

0.05

0.1

0.15

0.2

0 1 4 8 12

0

5

10

15

20

25

30

0 1 4 8 12

Lo
w

 L
oa

d
P

ac
ke

t L
at

en
cy

Uniform
Random

Number of faults
(a)

DRAIN-16 DRAIN-64 DRAIN-128 DRAIN-1K
DRAIN-4K DRAIN-16K DRAIN-32K DRAIN-64K

Uniform
Random

Number of faults
(b)

S
at

ur
at

io
n

Th
ro

ug
hp

ut

Figure 7.9: Low-load latency and saturation throughput of DRAIN as a function of the
epoch, with increasing number of faults.

154

0

10

20

30

40

Blackscholes Canneal FFT Swaptions BC BFS

99
%

-ti
le

 P
kt

 La
te

nc
y

Escape VC (VN-3, VC-2) SPIN (VN-3, VC-2) DRAIN (VN-3, VC-2)

DRAIN (VN-1, VC-2)DRAIN (VN-1, VC-6)

Blackscholes Canneal FFT Swaptions BC BFS
8x8 Mesh4x4 Mesh

Figure 7.10: 99th-percentile latency comparison.

due to frequent misrouting. As the epoch is increased, latency is reduced and saturation

throughput is increased. Draining is best done very infrequently due to the low likelihood

of deadlocks.

Tail Latency. Figure 7.10 shows the effect of DRAIN on the 99th-percentile network

packet latency compared to escape VCs and SPIN. Since DRAIN is oblivious to deadlocks,

there is a risk of allowing deadlocks to clog the network and degrade performance for a

long period of time. In our experiments, we find that despite infrequent draining (i.e., large

64K epochs), the impact on tail latency is small. We observe a modest increase in 99th-

percentile latency only when DRAIN is configured with less total VCs than the baselines

(VN-1, VC-2), running the most memory-intensive applications.

7.5 Discussion

DRAIN is a new way to propose both routing and protocol level deadlock freedom. A

question that is important to answer is:

How much the oblivious packet movement on pre-defined drain path cause packet mis-

routing?

Figure 7.5 and Figure 7.6 does qualitatively shows that the impact is not significant for the

155

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 7.11: Transpose traffic; 8x8 Mesh with 12 link failures, each input port has 4 VCs.
Percentage of routed, mis-routed and free buffers present in the topology until saturation.

given traffic pattern. We further investigated and quantified what percentage of packets get

misrouted, routed due to the oblivious packet movement over pre-defined drain paths as

shown in Figure 7.11, Figure 7.12, and Figure 7.13.

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 7.12: Transpose traffic; 8x8 Mesh with 8 link failures, each input port has 4 VCs.
Percentage of routed, mis-routed and free buffers present in the topology until saturation.

The consistent trend that we observe here is that misrouted packets is less than routed

packets. Although the %age of packets getting misrouted increases as the number of hops

of packets traveling on the oblivious DRAIN path increases. In the original paper we

however showed the results with packets traveling one hop on the predefined DRAIN path

during each epoch.

156

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 7.13: Transpose traffic; 8x8 Mesh with 4 link failures, each input port has 4 VCs.
Percentage of routed, mis-routed and free buffers present in the topology until saturation.

In certain cases, however, the saturation throughput increases when the hops travelled

per DRAIN increases. We think that this happens because of better load balancing in the

face of regional congestion in an irregular topology for certain traffic patterns.

In this thesis, we started with BBR as first subactive technique to provide deadlock free-

dom, BBR arguments each router of the network with empty VC or bubble this limits the

number of buffers available for packet to use, which results in low saturation throughput.

BINDU, improves upon BBR by using one bubble or bindu which traverses the network in

a predefined-path called bindu-path. DRAIN does not involve any bubble, instead moves

the packets on a predefined cyclic path, called DRAIN-path, all at once periodically.

DRAIN proposes to obliviously spun the packets in the network and cause misrout-

ing. In next chapter we will talk about another subactive technique to resolve routing and

protocol deadlocks, called SWAP: Synchronized Weaving of Adjacent Packets for Network

Deadlock Resolution. It proposes to swap/exchange packets from adjacent routers period-

ically, throughout the network to resolve any deadlock that might form. This work does

not require global coordination among the packets in the network, SWAP is light weight,

and provides higher performance. Moreover, it limits the misrouting of packets compared

to DRAIN as we will see in next chapter, SWAP request by upstream router can be de-

clined by the downstream router, if the packet at downstream router is at its destination,

157

or if there is free VC present at the downstream router. Therefore, SWAP provides higher

performance compared to DRAIN.

7.5.1 Packet Latency Histogram

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BC
vc-per-vnet=2

XY escapeVC

DRAIN-multi-1k DRAIN-multi-4k

DRAIN-multi-16k DRAIN-multi-32k

DRAIN-multi-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BC
iso-VC

XY escapeVC

DRAIN-single-1k DRAIN-single-4k

DRAIN-single-16k DRAIN-single-32k

DRAIN-single-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BC
vc-per-vnet=2

escapeVC DRAIN-multi-1k

DRAIN-multi-4k DRAIN-multi-16k

DRAIN-multi-32k DRAIN-multi-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BC
iso-VC

escapeVC DRAIN-single-1k

DRAIN-single-4k DRAIN-single-16k

DRAIN-single-32k DRAIN-single-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BFS
vc-per-vnet=2

XY escapeVC

DRAIN-multi-1k DRAIN-multi-4k

DRAIN-multi-16k DRAIN-multi-32k

DRAIN-multi-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BFS
iso-VC

XY escapeVC

DRAIN-single-1k DRAIN-single-4k

DRAIN-single-16k DRAIN-single-32k

DRAIN-single-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BFS
vc-per-vnet=2

escapeVC DRAIN-multi-1k

DRAIN-multi-4k DRAIN-multi-16k

DRAIN-multi-32k DRAIN-multi-64k

0.00%

10.00%

20.00%

30.00%

40.00%

0-5 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50

BFS
iso-VC

escapeVC DRAIN-single-1k

DRAIN-single-4k DRAIN-single-16k

DRAIN-single-32k DRAIN-single-64k

Fault-0 Fault-8

Figure 7.14: Network Packet latency distribution of LIGRA[75] application benchmarks
with regular 4x4 and irregular 16 core topology

Figure 7.14 shows the network packet latency distribution of LIGRA[75] applications

when run with MESI Two Level cache coherence. The evaluation is done for both regular

4x4 Mesh and irregular topology. The figure, shows that DRAIN does not mis-route pack-

ets drastically to change the latency distribution graph towards right. Here iso-VC is the

configuration which uses single VNet in DRAIN with same number of VCs as other sister

158

schemes. VC-per-vnet configuration uses same number of VNet (3) in DRAIN as in other

sister schemes.

Its peak coincides with minimal XY routing in a regular 4x4 Mesh and for irregular

topology it provides higher performance compared to non-minimal UP*/DOWN* routing

used in the escape VC.

7.6 Chapter Summary

In this chapter, we propose a new technique of deadlock-freedom technique for provid-

ing subactive deadlock freedom in interconnection networks. Traditional, well-studied ap-

proaches are either proactive, i.e., deadlock is avoided by design through turn restrictions,

or reactive, i.e., deadlock is detected and recovered from. In contrast, a subactive approach

periodically sweeps away potential deadlocks. we propose DRAIN, a low-cost mechanism

to flush potentially deadlocked packets from their current location, which is unique in its

ability to eliminate both routing-level and protocol-level deadlocks simultaneously. This

new approach leverages the critical observation that deadlocks are rare in practice. While

it is imperative that we handle deadlocks, we need not devote extra resources (VCs and vir-

tual networks), extra complexity (detection and recovery mechanisms) nor reduce nominal

operating performance (turn restrictions). DRAIN solves this problem with lower com-

plexity and can be implemented with minimal VCs and virtual networks. Finally, DRAIN

can be reconfigured to handle random hard faults, thus increasing the usable lifetime of

interconnected many-core architectures.

159

CHAPTER 8

SYNCHRONIZED WEAVING OF ADJACENT PACKETS FOR NETWORK

DEADLOCK RESOLUTION(SWAP)

An interconnection network forms the communication backbone in both on-chip and off-

chip systems. In networks, congestion causes packets to be blocked. Indefinite blocking

can occur if cyclic dependencies exist, leading to deadlock. All modern networks devote re-

sources to either avoid deadlock by eliminating cyclic dependences or to detect and recover

from it.

Conventional buffered flow control does not allow a blocked packet to move forward

unless the buffer at the next hop is guaranteed to be free. We introduce SWAP, a novel

mechanism for enabling a blocked packet to perform an in-place swap with a buffered

packet at the next hop. We prove that in-place swaps are sufficient to break any deadlock

and are agnostic to the underlying topology or routing algorithm. This makes SWAP appli-

cable across homogeneous or heterogeneous on-chip and off-chip topologies. We present

a light-weight implementation of SWAP that reuses conventional router resources with

minor additions to enable these swaps. The additional path diversity provided by SWAP

provides 20-80% higher throughput with synthetic traffic patterns across regular and irreg-

ular topologies compared to baseline escape VC based solutions, and consumes 2-8× lower

network energy compared to deflection and global-synchronization based solutions.

SWAP is another nugget in the gamut of subactive schemes proposed thus far, and an

important one. As we will see the swap operation is fundamentally local operation com-

pared to DRAIN which moves all the packets in the network. Unlike DRAIN, SWAP does

not need embedded ring covering the whole topology. Table 8.1 qualitatively compares

SWAP against the prior work and subactive techniques proposed so far.

Let’s study this subactive technique in more detail.

160

We focus on schemes that provide full path diversity, and resolve deadlocks that have

occurred. We characterize prior work on deadlock resolution via the following taxon-

omy:

• Deadlock resolution via escaping (e.g., escape buffers [38, 47]); the key drawback is

the need for extra buffers;

• Deadlock resolution via misrouting (e.g., deflection routing [42, 45, 44]); the key draw-

back is increased energy consumption and loss in throughput;

• Deadlock resolution via coordinating or synchronizing (e.g., SPIN [41]); the key

drawback is expensive global coordination for detection and spinning.

None of the state-of-the-art deadlock-freedom solutions (avoidance/recovery) provide

full path diversity and high-throughput without requiring deadlock detection or global co-

ordination for arbitrary topologies. This motivates our work. Going back to first principles,

we argue that a network deadlocks because a packet is indefinitely blocked; the reason is a

fundamental network design rule that says that a packet should be forwarded from an up-

stream router to a downstream router if and only if the downstream buffer is free (which is

known via credits/on-off signaling), or is guaranteed to become free by the time the packet

arrives [77, 41]. If this rule is violated, packets may be dropped.

We question this fundamental rule and propose Synchronized Weaving of Adjacent

Packets (SWAP). SWAP introduces a new deadlock resolution paradigm: backtracking1

, where deadlocked packets yield their position and allow other packets to move forward.

Backtracking is performed via in-place packet swaps across buffers in neighboring routers.

Figure 8.1 shows the conceptual idea. Unlike software, where a swap requires additional

temporary storage, in hardware, an in-place swap is conceptually the same as a cyclic

shift register. Intuitively, SWAP allows any blocked packet to make guaranteed forward

progress to its destination, regardless of the congestion in the network, via the mechanism

of swaps. More formally, we prove that performing swaps at periodic intervals ensure that

1We acknowledge Dr. Joshua San Miguel for coining the term ‘backtracking’

161

Table 8.1: Summary Table of Qualitative Comparison of Deadlock Freedom
Mechanisms. P: Proactive, R: Reactive. S: Subactive.

Techniques Full Path
Diversity

No Detect
deadlock

No Mis-
route

No Extra
Buffers

Routing
deadlock
freedom

Protocol
deadlock
freedom

Dally’s the-
ory/Acyclic
CDG (P) [26]

✗ ✓ ✓ ✓ ✓ ✗

Duato’s the-
ory/Escape
VC (P) [52]

✗* ✓ ✓ ✗ ✓ ✗

Bubble [37,
50] (P)

✓ ✓ ✗ ✗ ✓ ✓+

Deflection
(P) [42]

✗** ✓ ✗ ✓ ✓ ✓

Deadlock
Buffers (R)
[49, 47, 65,
38]

✓ ✗ ✓ ✗*** ✓ ✓***

Coordination
(R) [41]

✓ ✗ ✓ ✗**** ✓ ✗

BBR (S) [8] ✓ ✓ ✓++ ✓ ✓ ✗

BINDU (S)
[9]

✓ ✓ ✗ ✓ ✓ ✗

DRAIN (S)
[10]

✓ ✓ ✗ ✓ ✓ ✓

SWAP (S)
[11]

✓ ✓ ✗ ✓ ✓ ✓

* Within escape VCs: limited path diversity + requires topology information for escape
path.
**At low-loads, full path diversity is available. But at medium-high loads, packets cannot
control the directions or paths along with they are deflected.
***DISHA [47] uses timeout counters present at each input port to choose a packet to
eject from the network. It requires a set of extra buffers to route the packet involved
in deadlock. Some variations of DISHA, such as mDISHA [49] provide protocol-level
deadlock freedom
****SPIN[41] requires a buffer in each router to hold the dynamic deadlock path over
which packets involved in deadlock would move synchronously.
+ Bubble Coloring [50] provides protocol-level deadlock freedom but involves non-
minimal path traversal.
++ BBR provides limited misrouting of packet because of Bubble Exchange subsec-
tion 5.3.1

162

clk

BA0
1

0
1

Swap=0
clk

BA0
1

0
1

clk

AB0
1

0
1

clk

AB0
1

0
1

Swap=0 Swap=1 Swap=1 Swap=1 Swap=1 Swap=0 Swap=0

Figure 8.1: The basic hardware implementation for swapping the content of two Flip Flops
/ FIFOs.

any cycles, if they form in the network, are broken dynamically via swaps, guaranteeing

deadlock freedom. Further we show that despite infrequent misrouting of packets, SWAP

is free from livelock.

This chapter makes the following contributions:

• We propose SWAP, a novel mechanism for in-place packet swaps across routers in a

network.

• SWAP provides deadlock-freedom via packet backtracking, while providing desired

metrics of full path diversity, high throughput, no additional VCs, no deadlock detec-

tion, and topology agnosticism. Table 8.1 qualitatively contrasts SWAP with current

deadlock-freedom solutions.

• We present a light-weight implementation of SWAP that adds 4% area overhead over a

state-of-the-art VC router.

• SWAP increases throughput by 20-80% with synthetic benchmarks for a full and faulty

mesh, compared to escape VCs, and reduces network link activity by 2-8× compared

to deflection and synchronization-based schemes.

• We show that using SWAP with conventional deadlock-free routing enhances network

throughput by 10% since swaps allow packets to move away from congested parts of

the network. Thus SWAP emulates the behavior of VCs without adding any additional

buffers, making it applicable beyond deadlock resolution.

163

8.1 SWAP Theory

In this section, we present the theoretical underpinnings of our SWAP scheme. First, we

provide necessary definitions for the reader, overview the basic operation and provide a

concrete walk-through example. Then we provide a proof of deadlock and livelock free-

dom. section 8.6 then presents one possible realization of our SWAP theory.

8.2 Definitions

Deadlock: Deadlock occurs when packets remain inside the network indefinitely and never

reach their destination. Packets wait forever to acquire the buffer at next router due to a

cyclic dependency between the buffers.

Forward Progress: We use forward progress for a packet to refer to a scenario where it

moves towards its destination.

Backtrack: We refer to backtracking for the packet that yields its position and moves back

to the upstream router during the swap.

Swap: A swap refers to the act of interchanging two packets from two adjacent routers.

The high-level idea is shown in Figure 8.1. A Swap requires no additional buffers. It lever-

ages the bi-directional links between adjacent routers to simultaneously send two packets

(serializing the flits over the link) in either direction.

swapFwd packet: During a swap, the initiator (a.k.a. upstream router) chooses and routes

the swapFwd packet towards the productive direction to the downstream router. This packet

makes forward progress.

swapBack packet: The packet backtracked from the downstream router to the initiator

to allow swapFwd packet to sit in its place. The swapBack packet acquires the buffer of

upstream router which was held by the swapFwd packet.

swapCycle: The cycle during which a specific upstream router performs a swap of one of

its buffered packets.

164

A

F E

B C

D

BC
CD

AB

DEEF

FA
BC

CD
AB

DEEF

FA
c

c
BC

CD
AB

DEEF

FA

c

Cyclic Cyclic

Channel Dependence Graph (CDG) for SWAP

Deadlock! No Deadlock

spin spin

Deadlock!

timeout

(1) Timeout triggered if no movement for K cycles
(2) Router A sends “probe” to map deadlock path
(3) Router A sends “move” to synchronize spin time

Deadlock!

timeout

swap

Deadlock!

swap

No Deadlock No Deadlock

A

F E

B C

D

c d f

z y x

z
c d

y x f

A

F E

B C

D

z
c d

y x f

A

F E

B C

D

c

x df

y z

A

F E

B C

D

A

F E

B C

D

d f

y x

packet
going
to D

c

z

packet
going
to C

Deadlock!

A

F E

B C

D

c d f

z y x

cd f

z y x

backtrack

A

F E

B C

D

A

F E

B C

D

cd f

z y x

backtrack
d f

z

y x

c

ejectBC
CD

AB

DEEF

FA Cyclic

BC
CD

AB

DEEF

FAAcyclic Acyclic

Channel
Dependence

Network State

(c) SWAP

A coordinates with B B coordinates with C

A

F E

B C

D

packet
going
to C

Deadlock!

A

F E

B C

D

c d f

z y x

d f

y x

packet
going
to D

c

z

A

F E

B C

D

packet
going
to C

A

F E

B C

D

c d f

z y x

d f

y x

packet
going
to D

c

z

c
d

W->E

L->E

Conflict for
East port!

East

deflect
A

F E

B C

D

d

fz

b

x

c misroute

misroute

y

dnew packet
injected for D A

F E

B C

D

b
c

re-routeA

F E

B C

D
fx

y
d

misroute

k conflicting
packet for S
port d

re-route
…

(b) SPIN

(a) Deflection

d
deflect

suppose conflict
for S port

A

Detection and
Synchronization
Messages
(Probe, Move)

(1) Timeout triggered if no movement for K cycles
(2) Router A sends “probe” to map deadlock path
(3) Router A sends “move” to synchronize spin time

Figure 8.2: Example comparing (a) Deflection, (b) SPIN and (c) SWAP using a 3×2 mesh.
The left side of the figure (before dotted line) sets up the same initial condition of deadlock
in the three designs, and the right side demonstrates how they operate. In deflection routing,
the deadlock does not persist as packets move every cycle. However, the green packet
(going to Router C) and the purple packet (going to Router D) are both misrouted due to
conflicts, and take multiple cycles to be re-routed to their destinations. In SPIN, if a packet
in a specific VC (e.g., at Router A) does not move for a specified number of cycles, a
timeout occurs, and a probe is sent to map the possible deadlock path. The probe returns
after 12 cycles. A move message synchronizes all routers on the deadlock path to perform
a spin. Once the move returns, the spin is performed, and every packet moves forward one
hop. The deadlock still persists, so the timeout, probe, move, and spin process repeats.
In the last step, packet c reaches its destination and the deadlock is resolved. In SWAP,
Router A (at a fixed period), coordinates locally with its neighbor (Router B) and performs
a swap: packet d is backtracked, and packet c moves forward. The deadlock still persists.
Packet c performs another swap, reaches its destination, and the deadlock is resolved. The
corresponding CDG at every step in SWAP is also shown.

165

Corresponding
Channel

Dependency
Graphs
(CDG)

Network
State
with

Buffered
Packets

F

SWAP

N

W E

S

N

W E

S

A B

CD

A B

CD

E

N

W E

S

A B

CD

E

F F

E

De
ad
loc

k
br
ok
en

De
ad
loc

k!

AB

BC

CD

DA

AB BE

CD

DA

Cyclic Acyclic

DA

Acyclic

S->E
N->W

(a) (b) (c)

E->N

W->S

N->W

E->N

S->E

W->E

N->W

E->N

S->N

W->S

W->E

BE

BC

AB BE

CD

BC

Figure 8.3: Walk through example of SWAP with corresponding CDG. Each node in the
CDG represents a link (e.g., node ‘AB’ is the link from router-A to router-B) and each
edge represents a packet that wants to turn from the source link to target link (e.g., ‘AB’
to ‘BC’ represents the pink packet currently buffered at router-B making a West to South
turn). (a) there is a deadlock between the four packets as seen by the cyclic CDG. A swap
is initiated by router-A between the yellow packet at A with the pink packet at B. (b) The
swap completes. Now the yellow packet (swapFwd) moves to B and wants to go East,
while the pink packet (swapBack) is backtracked to A. The CDG is acyclic: the deadlock
is broken. (c) All packets move forward via normal operation.

swapPeriod: swapPeriod refers to the number of cycles it takes for the same router in the

network to try and initiate a swap for one of its buffered packets.

8.3 Assumption

In SWAP we assume that the local port of the router (injection input port) has separate

VNet for each message class, this assumption makes sure that response packet gets to enter

the network irrespective of current occupancy of network buffers.

8.4 Proof of Routing Deadlock Freedom

Theorem 1: In a deadlock cycle of length n, at most n − 1 swaps by a specific packet are

sufficient to break the deadlock.

166

Proof: A swap operation removes one edge from and adds one new edge to the runtime

CDG. The edge that is removed is the original direction the swapBack packet intended to

go towards, while the edge that is added is the new direction the swapFwd packet intends

to go towards. n − 1 swaps allows the packet to reach the node one-hop behind it. One of

these n − 1 intermediate routers will either be its final destination, or an exit point out of

this ring. In either scenario, the swapFwd packet will no longer have an edge in the CDG

along the original dependence cycle, thereby breaking the deadlock.

Example: Figure 8.3 shows the network state along with the channel dependence graph

(CDG) at each step. For the sake of simplicity, we show one VC per port, and single-flit

packets. In Step (a), four packets are in a deadlock, as is also evident by the cyclic CDG.

Suppose Router A chooses the yellow buffered packet as its swapFwd packet. The yellow

packet wishes to go East making the pink packet at the downstream router the swapBack

packet. A sends a swap request to B, receives an ACK, and the swap is executed. In Step

(b), the yellow packet has made forward progress; the deadlock is broken as it wants to go

East. This is also seen from the CDG. The packets now move forward via conventional

means, as seen in Step (c). Here, the first swap led to the CDG becoming acyclic, since

the new edge was no longer along the original cycle. In a more general case, it may be

possible that even after a swap, the CDG remains cyclic (for example, if there is a longer

dependence cycle, as shown in Figure 8.2(c)).

Theorem 2: For a given system which implements SWAP, as long as every packet gets

a chance to perform a swap, the network is deadlock-free.

Proof: A deadlock, by definition, is an indefinite blocking of a packet. As long as

the implementation of SWAP can guarantee that every packet will have a chance to per-

form a swap, it will make forward progress, making the network inherently deadlock free.

However, it is possible for the packet that made forward progress to later be backtracked

by another packet. Indefinite backtracking could lead to a livelock (i.e., the packet never

reaches its destination). Next, we discuss why SWAP is livelock free.

167

8.5 Proof of Livelock Freedom

Theorem: For a given system that implements SWAP, as long as any backtracked packet

eventually has the opportunity to move forward by two hops before being backtracked

again, the network is livelock-free.

Proof: Backtracking can be viewed as incrementing a packet’s number of remaining

hops h (to its destination) by at most 1. Assume that the system allows a packet to move two

hops before being backtracked again (i.e., before being selected as a swapBack packet). For

every increment by 1 in h due to backtracking, there is a decrement by 2. This implies that

in this system, for any given packet, h eventually goes to 0, guaranteeing forward progress

to the destination.

Implementation: There are two important design considerations to implement such a

system. First, the swapPeriod must be greater than the time it would take for a packet to

move two hops forward in the absence of contention. This avoids any pathological cases of

packets continuously being backtracked. Second, the selection scheme that decides which

packet should be swapped next must be fair. Ideally, this selection is random; though for

practical purposes, round robin is sufficient. A fair selection scheme ensures that no packet

is starved in the presence of contention. Even if a packet is not able to move two hops

forward now, it will eventually be able to, as guaranteed by the fair selection. Since the

network topology is finite, h is upper-bounded by the network diameter (i.e., the largest

number of hops between any two routers). Thus, no amount of contention in the system

can cause a packet to be backtracked indefinitely.

8.5.1 SWAP in Arbitrary Topologies

Arbitrary topologies are challenging for popular deadlock-avoidance solutions such as

XY/West-first routing algorithms; routing algorithms now require CDG analysis to de-

termine topology-specific turn restrictions (for all paths or within escape VCs). In contrast,

168

DE
AD
LO
CK
!!

DE
AD
LO
CK
!!

DE
AD
LO
CK
!!

DE
AD
LO
CK
!!

21
2

3
4

5

6
1 7

83

4 95

6

1

2

3

6

5
4
7

1 4

56

2 3

(a) Ring (b) Mesh (d) Irregular-2(c) Irregular-1

Figure 8.4: Examples of Deadlocks in Arbitrary Topologies

SWAP is agnostic to the topology as any swap just involves neighboring routers. For exam-

ple, the deadlock ring in Figure 8.2 could lie within any topology in Figure 8.4 and use the

same mechanism of swaps for deadlock freedom. SWAP is also agnostic to the underlying

routing algorithm. The routing algorithm decides the output port (i.e., neighboring router)

of the swapFwd packet, and the swapBack packet is chosen from the corresponding input

port at the neighbor.

8.6 Swap Implementation

Multiple implementations of SWAP are possible. We favor an implementation with low

complexity. We describe the possible design space and the intuition behind our given design

choices, acknowledging that alternate implementations are possible.

8.6.1 Initiating a Swap

Although it is possible to map out the full deadlock loop at runtime via timeout and

probes [38, 41], and then perform controlled swaps to recover from the deadlock (Proof

1 in section 8.4), we prefer a less expensive approach. Recall that any SWAP implemen-

tation ensures deadlock and livelock freedom if it ensures that (a) every packet gets the

chance to make forward progress via a swap, and (b) the system allows a packet to move

two hops in an uncongested scenario, before being backtracked. To ensure (a), we enforce

periodic swaps by every router at a configurable time period (swapPeriod) and we add a

169

pointer in every router to cycle through all VCs at all ports that decides which VC will try

and initiate a swap. To ensure (b), we need to account for the worst case delay for a packet

in two adjacent routers without any stalls due to insufficient credits. This would be a packet

in a VC contending with all other VCs at that router for a specific output port, followed by

traversing the router and link, and repeating the same at the next router. Thus,

swapPeriod ≥ 2× (# ports × # vcs/port + (router pipeline delay

+link delay)) + serialization delay
(8.1)

This works out to be 54 cycles for a 5-ported mesh router with 4 VCs per port, 5-flit packets,

4-cycle routers and 1-cycle links, and 18 cycles for a 1-cycle, 1 VC per port mesh router.

In our implementation, each router performs a swap during its swapCycle. The swap-

Cycle is defined as

(cycle/m)%(K ×N) == router id (8.2)

where K is a configurable swapDutyCycle, N is the number of routers in the network, m

is the maximum number of flits of any packet in the system and K ×N is the swapPeriod.

K determines how often each router initiates swaps; the lower the value of K (minimum

could be 1), the more swaps performed in the network. When K = 1 and m = 1, each router

initiates a swap every N cycles in a TDM manner. In a 64-core system, this means that

even with K = 1, each router attempts a swap once every 64 cycles, which is greater than

the minimum swapPeriod calculated above for livelock avoidance.

The router initiating the swap, as dictated by its ID and current cycle, is the upstream

router and router with which it will swap its packet, is the downstream router. At any given

cycle, by design, there can only be one upstream router and several possible downstream

routers depending on the topology.

During the swapCycle, the upstream router selects a swap-Fwd packet from one of its

internally buffered packets. It sends a swap request signal via a 1-bit wire to the down-

stream router at the output port for this packet (which is determined by the routing algo-

170

Table 8.2: SWAP Operation Details.

Updating swapPointer Conditions for Failed Swaps
* When the packet pointed by swapPointer leaves
the router naturally by winning switch arbitration,
the swapPointer moves in round-robin fashion to
the next non-empty VC.

* At least one of the VCs within the virtual net-
work of the swap req is empty. In this case, the
packet could arrive by normal means, and a swap
is not required.

* When a swapFwd packet arrives at this router
from an upstream router via a swap. This packet
now becomes the swapFwd packet to give it the
highest priority at the next swapCycle in case it
does not leave naturally.

* In virtual cut-through routers, if the candi-
date swapFwd and swapBack packet is distributed
across two routers, a swap is not performed. In
wormhole, this condition leads to packet trunca-
tion [42, 45].

rithm). The downstream router selects a swapBack packet and sends an ACK. section 8.7

details how the swapFwd and swapBack packets are selected. Upon receiving the ACK, a

swap is executed over the next m cycles (for m-flit packets at maximum) with both routers

sending their respective packets out at the same time to each other over the respective uni-

directional links connecting them. These links are reserved for the swap by the ACK and

are not allocated to any other packets by the switch allocators at the two routers.

A successful swap can only be initiated when all the input buffers of both upstream

and downstream routers are occupied. If this condition is false, either the swap request is

not sent, or it is NACK’d. Other conditions for NACK’d requests are discussed in subsec-

tion 8.7.2.

Deadlock Resolution Time Trade-off. Since deadlocks are rare [38, 41], our imple-

mentation allows only one packet swap in the system at any time. This reduces the number

of bactracked packets, reduces complexity and eliminates any race conditions that may

arise if the same router is both trying to initiate a swap as an upstream router, and acknowl-

edge a swap request as a downstream router. We can tune the rate of deadlock resolution by

tuning the swapPeriod. It is possible to have implementations that allow multiple routers in

disjoint parts of the network to perform swaps concurrently, or have implementations that

detect deadlocks and perform controlled swaps to resolve it, at the cost of more overhead.

171

8.7 Selecting the packets to swap

8.7.1 Selecting the swapFwd packet

Every router has a swapPointer. swapPointer is valid when there is packet present in any

of its input VCs; it points to that VC. At the onset when there are no packets present in the

router, swapPointer is invalid. If multiple packets arrive at different input ports of the router

in the same cycle, the swapPointer becomes valid and randomly points to any of the input

VCs containing the recently arrived packets. Conditions for further updating swapPointer

are detailed in Table 8.2.

The packet sitting in the swapPointer VC is the swapFwd packet2 to be sent to down-

stream router at the swapCycle of this router. The downstream router is chosen by the next

hop router in the minimal path to this packet’s destination based on the routing algorithm.3

However, if the packet is due to be ejected, it cannot be the swapFwd packet, as that would

violate the basic requirement of SWAP to have swapFwd packets always make forward

progress towards their destination. Thus, the swapPointer will move in a round-robin man-

ner to the next non-empty VC with a packet wishing to use a non-ejection port. If no such

VC exists, it becomes invalid. If a valid swapFwd packet exists, the router initiates a swap

by sending a swap req to the downstream router. The swap req carries the VC ID as ex-

plained in subsection 8.7.2. If it is ACK’d, the swap operation is setup for the next cycle.

A full swap operation thus takes 4 cycles: (i) req from upstream, (ii) conditions check at

downstream, (iii) ACK, and (iv) swap. These are pipelined; each cycle there can only be

one router performing a swap, as mentioned in subsection 8.6.1.

2More complex solutions to select swapFwd packets can be devised if QoS is needed.
3For example, a fully random routing algorithm might pick the next hop based on some congestion metric

such as available credits.

172

A

D

B

C

A

D

B

C

dest:C
S—>E

dest:B
W—>N

upstream
router

downstream
router

SWAP

swap_ptr dest:B
S—>E

dest:C
W—>E

Figure 8.5: Example showing that it is possible for both the swapFwd (green) and swap-
Back (yellow) packets to make forward progress towards their destinations (B and C re-
spectively) after a swap, due to path diversity in the underlying topology

8.7.2 Selecting the swapBack packet

Upon receiving a swap req from an upstream router, the downstream router selects a swap-

Back packet at the input port connected to the upstream router and respond with a swap ack.

The swapBack packet is selected from any VC within the protocol message class (inferred

from the VC ID sent by the upstream as part of swap req). For simplicity, we select the

packet with the same VC ID as the swapFwd packet. Table 8.2 details the conditions under

which the swap is NACK’d (i.e., swap ack is sent back as 0). Backtracking. It may appear

that the swapBack packet always moves away from its destination. This is not always true.

Both the swapFwd and the swapBack packet could move closer to their destinations (i.e.,

make forward progress), as shown in Figure 8.5, due to path diversity in the system.

U-turns. A swapBack packet effectively makes a u-turn, and will request to go back to the

router it was swapped from (unless the routing algorithm finds an alternate minimal path

for it). After the swap, it will move again either via regular switch allocation or via a swap

(once it becomes the swapFwd packet). It is possible for it to backtrack again in the next

swapPeriod without moving forward due to either of these conditions. But this will never

happen indefinitely, as proven in section 8.5.

173

X

vc-
0
vc-

1
vc-

k

vc-
0
vc-

1
vc-

k

vc-
0

vc-
1

vc-
k

vc-
0

vc-
1

vc-
k

Swap_busRouter

N
E

S
W

is_swapBack?

is_swapBack?

is_swap
Back?

is_swap
Back?

is_swap
Back?

is_swapBack?

is_swapBack?

is_swapBack?

Swap
Management Unit

Swap_bus
Arbiter

uTurn
support

Route
Compute

VC
Allocate

SWAP PTR

N_in

E_in

S_in

W_in
W-inport

E-inport

N-inport

S-inport

N_out

W_out

S_out

E_out
1
0

1
0

1
0 0

0

0

0

0

1

1

1

1

1

swap_req

swap_ack

swap_req

swap_ack

swap_req swap_ack

swap_req
swap_ack

Figure 8.6: SWAP Router Microarchitecture. Features added by SWAP are shaded in grey.
Datapath: bus connecting all input ports to allow a swapBack packet from the downstream
router to get buffered at any input VC, and u-turn support in the crossbar. Control path:
Swap Management Unit controlling when and what to swap. The blue and red paths show a
swapFwd packet going from South in port to East out port, and a corresponding swapBack
packet entering from East out port and getting buffered in the South in port.

174

8.8 Router microarchitecture

Figure 8.6 shows the microarchitecture of the SWAP router. We show a mesh router for

simplicity, though the same idea works for a router with any number of ports.

Datapath. We assume bi-directional links. A swap operation requires both a forward path

and a backward path to be setup between the upstream and downstream routers (red and

blue paths in the Figure 8.1) to swap the swapFwd and swapBack packets between their

respective VCs. The additions to the conventional router are quite minimal: one 2:1 mux

and one 2:1 demux in front of every input port, u-turn support in the crossbar, and a bus

connecting all input ports.

As an example, suppose the swapFwd packet is at the South input port Router A, and

the swapBack packet is at the West input port at Router B (Figure 8.3(a)). For generality,

suppose that their current VC IDs are #1 and #3, respectively (even though our implemen-

tation restricts the swaps to occur within the same VC ID).

• forward path (A South VC1 to B West VC3): the swapFwd packet reuses A’s cross-

bar to traverse to B’s West input port (blue path in Figure 8.6) and gets buffered into

VC3. This is exactly like a regular traversal. As mentioned earlier, during the swap, the

output link from A to B is not allocated to any other packet.

• backward path (B West VC3 to A South VC1): the swapBack packet reuses B’s

crossbar to make a u-turn towards A. The swapBack packet arrives at the East input port

at A, but needs to be buffered at the South input port. The pre-set swap bus transports

the packet from East to South, and buffers it in VC1 (red path in Figure 8.6).

Why is a simple bus sufficient? SWAP does not support multiple swaps in the same

cycle. Thus, we do not need a crossbar at the input of the router to support multiple swaps

from multiple downstream routers simultaneously. The swap bus is pre-configured by the

swap ack. This makes the SWAP implementation extremely light weight.

Virtual Cut-Through (VCT) and Wormhole Implementations. VCT routers have buffers

175

Table 8.3: SWAP vs. Deflection Routing

Deflection Routing SWAP

Mis-
routing

Forces packet deflections upon
buffers overflow [44] (every cy-
cle in case of bufferless de-
signs [42]) without support for
stalls. This leads to high mis-
routing and congestion.

Provides localized mis-
routing, which we call
backtracking, the rate of
which can be controlled
using the swapPeriod pa-
rameter.

Spread

Deflections in one part of the
network can trigger deflections
in another part, leading to high
latencies and dropped through-
put for all packets.

Backtracking is con-
trolled by swapPeriod
and swapCycle parame-
ters.

Router
Ports

Indirect restriction on the
router micro-architecture:
number of input ports must
equal the number of output
ports of the router.

Places no restrictions on
the router’s radix, making
it more amenable to arbi-
trary irregular topologies.

Router
Critical
Path

High hardware overhead for
switch-arbiter to perform the
best matching upon packet con-
flict. This also lies in the criti-
cal path of the router.

Adds minimal changes to
the baseline router micro-
architecture (Figure 8.6),
with the SMU operating
off the critical path.

Routing

Deflection routing algorithm is
a de-facto routing algorithm,
controlled purely by current
network congestion

Any routing algo-
rithm (minimal/non-
minimal/adaptive) which
by itself may or may not
be deadlock-prone.

deep enough to hold an entire packet. This design naturally works well for SWAP. Swaps

are only performed once the entire packet is received, as shown in Table 8.2. To support

SWAP with wormhole routers, we would add packet truncation support, similar to prior

works in deflection routers [42, 45, 44]. Packet truncation occurs on swapFwd and/or

swapBack packets if the former initiates a swap. .

Multi-flit Packets For m-flit packets, the swap operation takes m cycles, as the flits are

serially swapped.

Control Path. The control path of SWAP adds a Swap Management Unit (SMU) that

handles if, when and what to swap, as described in section 8.7.

176

Table 8.4: SWAP vs. SPIN

SPIN SWAP

Detection
Ap-
proach

Maps entire deadlock
path upon a timeout using
probes that take multiple
cycles.

No detection. Performs
swaps periodically based
on a VC occupancy thresh-
old.

Detection
Time

Longer deadlock cycles
take longer to map and
resolve

Independent of deadlock
cycle length

Synchro-
nization

Global: all routers in dead-
lock must spin at same time

Local: with neighbor who
will be performing swap

Resolution
Ap-
proach

All packets in deadlocked
ring move forward simulta-
neously

Only two packets move si-
multaneously.

Resolution
Time

(N-1) spins in worst case
for deadlock of length N

(N-1) swaps of specific
packet in worst case for
deadlock of length N

Misrouting None Backtracks packet one hop

8.8.1 SWAP vs. Deflection Routing and SPIN

Deflection routing [42], SPIN [41] and SWAP all rely on moving packets in the absence

of credits; thus, they are similar in their underlying mechanism for deadlock freedom.

Figure 8.2 shows an example comparing the three schemes. The key qualitative differences

of SWAP versus these are highlighted in Table 8.3 and Table 8.4. Quantitative comparisons

are present in section 8.9.

8.9 Evaluation

8.9.1 Methodology

We use gem5 [7]; to model networks with different configurations we use Garnet [59]. Ta-

ble 8.5 provides the detailed configuration parameters. Our baselines include a mix of state-

of-the-art deadlock avoidance (deterministic XY, congestion-aware adaptive west-first, and

escape VC), recovery (StaticBubble [38], SPIN [41]), and deflection (CHIPPER [45] and

MinBD [44]) techniques. Static Bubble relies on extra buffers added in a subset of routers at

design time, which are turned on upon deadlock detection (via probes) to drain deadlocked

177

packets. SPIN sends probes (upon timeouts) to detect the deadlock dependence ring, and

then performs a coordinated forward movement of the entire ring. For full-system simula-

tions, we run PARSEC [33] and LIGRA [75] (a graph processing suite) over gem5’s x86

and RISC-V models which have support for running these respectively.

Irregular Topologies. For our evaluations, we derive some irregular topologies by remov-

ing links from a mesh which emulates an SoC with heterogeneous-sized cores or accelera-

tors, or a many core where some links are faulty [70, 78], or have been power-gated [72].

In these scenarios, the resulting topology will not longer be able to use a simple turn-

model (e.g., XY/west-first) since certain turns are inevitable to reach some of the destina-

tions. Using these restricted turns can lead to routing deadlocks. We use a spanning tree

based Up-Down routing algorithm [25, 70, 78] across all VCs, or within an escape VC, as

our baseline deadlock avoidance schemes, and SPIN as the baseline deadlock resolution

scheme. For irregular topologies, we assume that information about the missing links and

the exact routing path (spanning tree vs minimal) is computed offline and embedded into

routing tables [70, 78].

8.9.2 Correctness

We start by demonstrating why a deadlock-freedom solution is imperative in any network.

Figure 8.7 runs a set of synthetic traffic patterns with fully-random minimal adaptive rout-

ing with no turn restrictions. The occurrence of deadlock causes the percentage of delivered

packets to drop sharply; the onset of deadlock depends on the traffic pattern, injection rate,

and number of VCs. This shows that deadlocks are highly dependent on the runtime net-

work state. SWAP delivers all packets successfully. To the best of our knowledge, SWAP

is the first non deadlock-recovery-based scheme4 to provide fully-adaptive random routing

with only 1 VC.

4SPIN [41] is the first to provide fully random routing with only 1 VC but relies on deadlock detection
and recovery.

178

Table 8.5: Network Configuration.

Network
Topology 8x8 Mesh, Irregular

Routing Fully-Adapt Random (except
when specified)

Latency Router: 1-cycle, Link: 1-cycle
Num VCs 1, 2, 3, 4
Buffer Organization Virtual Cut Through

Single packet per virtual channel
Deadlock Freedom Mechanism

Deadlock Avoidance Mesh: XY, West-first, EscapeVC.
Irregular: Up-Down [25]

Deadlock Recovery
Static Bubble [38], SPIN [41]
with deadlock-detection thresh-
old=128 cycles

Deflection CHIPPER [45], MinBD [44]

SWAP SWAP-K, where K = swapDuty-
Cycle

Traffic Pattern

Synthetic

Bit-Rotation, Bit-Reverse,
Uniform-Random, Transpose,
Shuffle. Mix of 1 and 5-flit
packets

Real Applications PARSEC [33], LIGRA [75]
System Configuration (for Real Apps)

Core
64 cores, x86/RISC-V In-Order,
Private L1D=32kB, L1I=32kB,
Shared L2 (LLC) Slice=128kB

Memory MOESI Directory Coherence, 4
DRAM Ctrlrs

0
25
50
75
100

0.02 0.12 0.22 0.32To
ta
l	P
ac
ke
ts
	

Re
ce
iv
ed

	(%
)

Injection	rate	(packets/node/cycle)

SWAP	(all	patterns) Uniform-Random
Bit-Complement Bit-Rotation
Shuffle

0
25
50
75
100

0.02 0.12 0.22To
ta
l	P
ac
ke
ts
	

Re
ce
iv
ed

	(%
)

Injection	rate	(packets/node/cycle)

SWAP	(all	patterns) Uniform-Random
Bit-Complement Bit-Rotation
Shuffle

0
25
50
75
100

0.02 0.12 0.22 0.32To
ta
l	P
ac
ke
ts
	

Re
ce
iv
ed

	(%
)

Injection	rate	(packets/node/cycle)

SWAP	(all	patterns) Uniform-Random Bit-Complement
Bit-Rotation Shuffle

(a) VC = 1 (b) VC = 4

0
25
50
75
100

0.02 0.12 0.22To
ta
l	P
ac
ke
ts
	

Re
ce
iv
ed

	(%
)

Injection	rate	(packets/node/cycle)

SWAP	(all	patterns) Uniform-Random
Bit-Complement Bit-Rotation
Shuffle

Figure 8.7: Percentage of received packets when running a fully random routing algorithm.
SWAP delivers all packets, irrespective of the traffic pattern. Without SWAP all traffic
patterns see a sharp drop in delivered packets, due to deadlocks. The injection rate when
deadlocks start depends on the traffic pattern and number of VCs.

179

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	(
cy
cl
es
)

Injection	Rate	(packets/node/cycle)

XY

West-first

Escape	VC

Chipper

MinBD

StaticBubble

SPIN

SWAP-1

SWAP-16K

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	(
cy
cl
es
)

Injection	Rate	(flits/node/cycle)

Transpose

XY West-first Escape-VC-AdaptiveWestFirst Chipper MinBD StaticBubble-Rand SPIN- AdaptiveRandom
dd=128

SWAP-1-AdaptiveRand SWAP-16384
AdaptiveRand
occupany-0

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	
(c
yc
le
s)

Injection	Rate	(packets/node/cycle)

Shuffle

XY West-first

Escape-VC-AdaptiveWestFirst Chipper

MinBD StaticBubble-Rand

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26 0.34

Av
er
ag
e	
pa
ck
et
	la
te
nc
y	
(c
yc
le
s)

Injection	Rate	(packets/node/cycle)

Bit-RotationXY West-first Escape-VC-AdaptiveWestFirst
(a) Transpose (b) Shuffle (c) Bit Rotation (d) Uniform Random

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	(
cy
cl
es
)

Injection	Rate	(packets/node/cycle)

XY West-first Escape	VC Chipper MinBD StaticBubble SPIN SWAP-1 SWAP-16K

Figure 8.8: Performance of SWAP-K (K = swapDutyCycle) with different traffic synthetic
patterns, across deadlock-freedom techniques in a 8×8 Mesh. Num VCs=4. Packet Size =
Mix of 1 and 4 flits.

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	(
cy
cl
es
)

Injection	Rate	(packets/node/cycle)

Shuffle

West-first

Escape-VC-AdaptiveWestFirst

SPIN- AdaptiveRandom
dd=128
SWAP-1-AdaptiveRand

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26 0.34

Av
er
ag
e	
pa
ck
et
	la
te
nc
y	(
cy
cl
es
)

Injection	Rate	(packets/node/cycle)

Bit-RotationWest-first Escape-VC-AdaptiveWestFirst SPIN- AdaptiveRandom
dd=128

SWAP-1-AdaptiveRand

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	
(c
yc
le
s)

Injection	Rate	(packets/node/cycle)

Up-Down

Escape	VC

SPIN

SWAP-1

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	(
cy
cl
es
)

Injection	Rate	(flits/node/cycle)

Transpose

West-first Escape-VC-AdaptiveWestFirst SPIN- AdaptiveRandom
dd=128

SWAP-1-AdaptiveRand

Uniform
Random

Shuffle Uniform
Random

Shuffle

(a) One Link Fault (b) Four Link Faults

10
15
20
25
30
35
40
45
50

0.02 0.1 0.18 0.26Av
er
ag
e	
pa
ck
et
	la
te
nc
y	
(c
yc
le
s)

Injection	Rate	(packets/node/cycle)

Up-Down Escape	VC SPIN SWAP-1

Figure 8.9: Performance of deadlock-free networks over Irregular Topologies.

8.9.3 Performance

Synthetic Benchmarks on a Mesh. Figure 8.8 shows the performance improvement of

SWAP over state-of-the-art deadlock avoidance and recovery schemes on a 8×8 mesh. All

designs except XY use adaptive routing. SWAP consistently matches or beats SPIN.

Here are some key observations:

• The swapDutyCycle K does not affect the achieved throughput; backtracking does not

adversely affect throughput.

• SWAP has a large throughput advantages over CHIPPER, which is known to have

low throughput due to deflections. Compared to MinBD, SWAP still provides better

throughput because even in the extreme design point of K=1, there is only one poten-

180

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

4x4 Mesh 8x8 Mesh 16x16 Mesh

WestFirst Escape VC SPIN SWAP

S
at

ur
at

io
n

Th
ro

ug
hp

ut

(p
ac

ke
ts

-r
ec

ei
ve

d/
cy

cl
e/

no
de

)

Figure 8.10: Effect on throughput as network size increases for Transpose traffic.

tial backtracking packet every cycle (at high-loads), while MinBD at high loads (and

high congestion) will result in heavy deflections once its extra buffer becomes full. We

quantify this in Figure 8.14.

• Compared to avoidance schemes, the performance benefits of SWAP come because

it can use fully adaptive random routing, with no turn restrictions. In addition, with

SWAP packets can swap and leave a congested region, without relying in credit flow.

Both these features push throughput.

• Compared to the recovery schemes (SPIN and Static Bubble), SWAP has no inher-

ent advantages due to path diversity – all designs use fully adaptive random routing.

However, the reason SWAP ends up beating SPIN for a few patterns is because once

deadlocks kick-in (see Figure 8.7), it takes multiple cycles to map out the deadlock

path (scales with length of deadlock) and synchronize [38, 41], during which time the

network essentially saturates (due to deadlock-driven congestion), leading to loss in

throughput. SWAP on the other hand, with periodic swaps with a neighbor, ensures

that even if a cycle were to form, it very quickly gets removed.

In summary, SWAP provides robust throughput improvements over both avoidance and

resolution-based deadlock-freedom techniques.

181

0
0.2
0.4
0.6
0.8

1
1.2
1.4

blackscholes
canneal

fluidanimate

stre
amcluste

r

swaptions
average

No
rm

al
ize

d
Ru

nt
im

e

West-first (WF) Escape VC Static Bubble SPIN SWAP-1024 + WF SWAP-1024 + Rand

0
0.25

0.5
0.75

1
1.25

BC

Be
llm
an
For
d

BF
SCC CF

Co
mp
on
en
ts

KC
ore MI

S

Pa
geR

an
k

Ra
dii

Tri
an
gleNo

rm
al

ize
d

Ru
nt

im
e XY WestFirst escapeVC SPIN SWAP-1024

(a) PARSEC

(b) LIGRA

Figure 8.11: Normalized Runtime with Multi-threaded Workloads.

Synthetic Benchmarks with Irregular Topologies. Next, we evaluate SWAP with two

irregular topologies and compare it against Up-Down routing (i.e., deadlock avoidance),

and SPIN (i.e., deadlock resolution).

These topologies have one and four links removed in an underlying 8×8 mesh. Fig-

ure 8.9 plots the latency vs. injection rate for uniform random and shuffle. For irregular

topologies, non-minimal routing in Up-Down completely kills throughput. Escape VCs

help get some of the throughput back, but still use Up-Down within the escape VC which

limits throughput. SWAP gets the same performance as SPIN.

In summary, the performance benefits of SWAP compared to deadlock-free routing al-

gorithms such as Up-Down are magnified when path diversity is at a premium, such as

in irregular topologies. Moreover, SWAP matches SPIN without requiring any of the ex-

pensive circuitry and signaling overheads for mapping the deadlock cycle and performing

global synchronization.

182

0.9

0.95

1

1.05

1.1

1.15

VC=1 VC=4 VC=1 VC=4

Uniform Random Bit Complement

Th
ro

ug
hp

ut
 N

or
m

al
ize

d
to

 W
es

t-F
irs

t

West-first (WF) WF + SWAP-1 WF+SWAP-1024

Figure 8.12: SWAP throughput with Uniform Random and Bit Complement traffic running
with a deadlock free routing algorithm. SWAP provides throughput benefits, especially at
low VC counts, by providing extra path diversity. With high VC counts, it is no worse than
the underlying algorithm.

Scalability study on saturation throughput. We compared the effect on saturation through-

put as network size increases across state-of-the-art deadlock avoidance and deadlock re-

covery schemes in Figure 8.10. The analysis is done on the regular mesh, each input port

has four VCs in the router (same as Figure 8.8).

In summary, we observe the trends in performance remain consistent - SWAP contin-

ues to provide higher throughput. However, the performance difference between schemes

decreases as network size increases.

Real Benchmarks. Figure 8.11 compare the normalized runtime of PARSEC and LIGRA

across deadlock-freedom schemes.

Real applications do not significantly stress the NoC due to low injection rates; for

most benchmarks, all deadlock-freedom schemes fared similarly as the injection rates were

quite low. In PARSEC, SWAP shows 30% runtime reduction for swaptions where we saw

significant network traffic, and for LIGRA, SWAP provides 2-4% runtime reduction. This

study re-iterates the motivation of deadlocks being rare and probabilistic events, where-in a

deadlock-freedom solution is necessary for correctness. SWAP provides deadlock freedom

183

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

SwapDutyCycle

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

SwapDutyCycle

Initiated	Swaps
Successful	Swaps

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

N
um

be
r	
of
	S
w
ap
s

SwapDutyCycle

Chart	Titlelow-inj	(0.02) low-inj	(0.02)

0

0.0002

0.0004

0.0006

0.0008

0.001

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

SwapDutyCycle

Chart	Titlelow-inj	(0.02) low-inj	(0.02)

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

SwapDutyCycle

Chart	Titlehigh-inj	 (0.38) high-inj	 (0.38)

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

SwapDutyCycle

Initiated	Swaps
Successful	Swaps

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Nu
um

be
r	o

f	S
w
ap
s

Swap	Duty	Cycle

Chart	Title low-inj	(0.02)

0

0.005

0.01

0.015

0.02

1 2 4 8 16 32 64 12
8

25
6

51
2

10
24

Swap	Duty	Cycle

Chart	Title low-inj	(0.02)
Low Inj Rate Medium Inj Rate High Inj Rate

VC=1

VC=4

Figure 8.13: Relation between number of initiated and successful swaps per cycle, as a
function of SwapDutyCycle for low, medium and high injection rates with uniform random
traffic. The top row is for VC=1 and the bottom for VC=4. The conditions for unsuccessful
(failed) swaps are discussed in Table 8.2.

without conservative restrictions for a rare event, or expensive circuitry to detect this event.

SWAP as an overlay over deadlock-free routing. SWAP can be overlaid on any net-

work since its basic functionality is to enable packet swaps between neighbors. So far we

have focused on the deadlock-freedom capabilities of SWAP, but it can also help reduce

congestion due to forced forward progress. We ran SWAP with an underlying west-first

deadlock-free algorithm. Figure 8.12 plots the peak throughput for two synthetic bench-

marks, with one and four VCs, normalized to the throughput of a west-first system without

SWAP. With one VC, SWAP-1 provides a 12% throughput boost for uniform random, and

6% for bit complement. This result can be interpreted as follows: packet swaps emulate

the behavior of additional VCs, as they can force packet movement even if downstream

packets are head-of-line blocked. With larger values of K and with higher number of VCs,

west-first provides similar performance with and without SWAP. Thus, SWAP’s backtrack-

ing does not adversely affect the underlying system performance. This study demonstrates

that deadlock-freedom benefits aside, adding SWAP to existing routers does not hurt, and

can potentially enhance throughput as it emulates the behavior of VCs.

184

1

1.2

1.4

1.6

1.8

2

0.02 0.06 0.1 0.16 0.22 0.28

Injection	Rate	(packets/node/cycle)

1
2
3
4
5
6
7
8
9
10

0.02 0.06 0.1 0.16 0.22 0.28

No
rm

al
ize

d	
Ne

tw
or
k	

Lin
k	E

ne
rg
y	

Injection	Rate	(packets/node/cycle)

West-First CHIPPER minBD

SPIN SWAP-1 SWAP-1024

(b) VC = 1 (c) VC = 1 - zoomed view

1

1.5

2

2.5

3

0.02 0.06 0.1 0.16 0.22 0.28

N
or
m
al
ize

d	
N
et
w
or
k	

Li
nk
	E
ne
rg
y	

Injection	Rate	(packets/node/cycle)

West-First CHIPPER minBD

SPIN SWAP-1 SWAP-1024

(a) VC = 4

1
1.2
1.4
1.6
1.8
2

2.2
2.4
2.6
2.8
3

0.02 0.06 0.1 0.16 0.22 0.28
N
or
m
al
ize

d	
N
et
w
or
k	

Li
nk
	E
ne
rg
y	

Injection	Rate	(packets/node/cycle)

West-First CHIPPER minBD SPIN SWAP-1 SWAP-1024
N

or
m

al
iz

ed
 N

et
w

or
k

Li
nk

 E
ne

rg
y

1

2

1.5

2.5

3

1
2
3
4
5
6
7
8
9

10

N
or

m
al

iz
ed

 N
et

w
or

k
Li

nk
 E

ne
rg

y

Figure 8.14: Energy (i.e., activity) of links in Deflection, SPIN and SWAP networks with
VC=4 and VC=1, normalized to a west-first routing algorithm which as purely minimal
routing. SWAP’s duty cycle parameter can help limit the amount of backtracking.

8.9.4 Sensitivity Studies

Recall that the swapDutyCycle K controls the rate of swaps in the network. In Figure 8.13,

we study the impact of K on the number of initiated and successfully executed swaps.

Let us start with a pathological worst case: very high post saturation injection rate (last

column), and K=1. K=1 leads to a swap getting initiated every cycle by each router in the

network in a round-robin manner. In this case, the number of initiated swaps is close to 1,

irrespective of VC count since all VCs are active post saturation. Moreover, nearly all swap

requests are successfully executed. For the same K=1, when network the injection rate is

lower, or if the number of VCs is high, the number of swaps initiated drops close to zero,

since the likelihood of the VC pointed to by the swapPointer being empty becomes very

high. At very low injection rates (first column), the average number of swaps initiated per

cycle is less than 0.02 for VC=1, and less than 0.001 for VC=4. Moreover, the number of

successful swaps is zero, since the input port from where a swapBack packet would have

been selected has empty VCs. When K becomes greater than 32, the number of initiated

swaps drops close to zero at all injection rates. This study shows that the number of swaps

is actually quite low; SWAP is a low-complexity solution for deadlock freedom with low

overhead. We quantify this overhead next.

185

0

5000

10000

15000

20000

25000

XY/West-first Escape	VC MinBD SPIN SWAP

Ar
ea
	(u
m
^2
)

Buffers Crossbar Arbiters

Other Deadlock	Detect SWAP	Mgmt	Unit

Figure 8.15: Post Place-and-Route Router Area (28nm TSMC, 1GHz).

8.9.5 Overheads

Energy Overhead due to Swaps vs. Spins vs. Deflections. Recall that a swap operation

involved two packets: a swapFwd and a swapBack packet. The swapFwd packet makes

forward progress: it gets read out of its upstream buffer, traverses the link, and gets written

into the downstream buffer. These are actions it would have had to take anyway and thus do

not contribute any energy overhead. The swapBack packet, however, makes a u-turn and

goes back to the router it came from. Its corresponding buffer read, link traversal and buffer

write are direct energy overheads. Figure 8.14 quantifies the extra link activity due to swaps

for uniform random traffic. With VC=4, the overhead is close to zero with K=1024, since

swap requests fail due to free VCs. With an aggressive K=1, the additional link activity

starts rising and goes up to 30% post saturation.

In contrast, CHIPPER and minBD start showing higher link activity at the onset of

contention even at low loads, and have 40-80% higher link utilization post saturation. Al-

though SPIN does not inherently misroute like deflection routing or backtrack like SWAP,

it adds link activity overhead due to its global synchronization messages (probe, move).

This leads to 2.8× higher link activity in the network post saturation due to the incessant

number probes that are sent and forked along the way to detect deadlocks.

186

The link activity behavior at the extreme design point of one VC is interesting. Here,

SPIN’s probes increase link activity by 8-10×. Deflection routing NoCs (which do not

have VCs) have the same 40-80% higher link activity discussed above. SWAP-1024 sees

increased activity, but it remains within 10%. The aggressive K=1 configuration sees a

jump in link activity once the network starts to saturate, and eventually adds similar energy

overhead as MinBD. This analysis shows that SWAP is a better design choice than both

deflection routing and SPIN. Compared to Deflection routing, it provides steady movement

that resolves deadlocks, without adding significant energy overhead due to backtracking as

its rate can be controlled. It also provides much better energy efficiency than SPIN as it

does not require probe broadcasts which consume significant energy.

Area Overhead. Figure 8.15 plots the area breakdown of the SWAP router compared to

XY/West-first, Escape VC, MinBD and SPIN. All routers were implemented using open-

source RTL [66] and synthesized and placed-and-routed using TSMC 28nm, targeting

1GHz with 1-cycle pipelines. MinBD, which enhances a bufferless NoC with some buffers,

naturally has the lowest area, but comes with misrouting overheads discussed above. All

buffered NoCs have 1 VC per port. The escape VC router is assumed to have 2 VCs per

port. SPIN’s overhead comes due to the synchronization, storage and management of the

detected deadlocked loop, that adds about 15% overhead. SWAP has ∼30% lower area

overhead than an escape VC router, and ∼4% higher area than a XY/West-first router. The

area overhead comes due to the swap management components that were presented earlier

in Figure 8.6.

8.10 Discussion

8.10.1 Providing Routing and Protocol Deadlock Freedom using Directed SWAPs

Thus far we discussed one of the ways to resolve routing deadlock by interleaving packet

swap operations throughout the network periodically. Here we discuss another approach to

guarantee deadlock freedom in irregular topology using swaps. This technique involves the

187

Cyclic – CDG

Acyclic
 CDG

Remove cyclic
edges in CDG
using SWAP

Deadlock Free
network!

Figure 8.16: swap operation essentially removes one edge and adds another in the runtime
CDG of the network. SWAP can guarantee deadlock freedom by making sure cyclic edges
in the runtime CDG of the network does not persist.

static analysis of the topology and creates the channel dependency graph (CDG) as shown

in the Figure 8.16. We can find all the cycles present in the CDG. We can then mark-out

those edges in the whole CDG which when removed can make the CDG acyclic. These

edges can effectively makes the network to deadlock. Remember that edges in the CDG

represent the turn that packet can take as allowed by the routing algorithm.

Now these marked edges can become the candidate over which swap can take place.

Swap between two packets from adjacent routers essentially removes one edge and adds

another edge in the runtime CDG of the network. If packets are stuck along that particular

marked edge in the static CDG, then using SWAP we can allow this packet to make forward

progress, until the original marked edge is no longer present in the runtime CDG of the

network. Discussion on the specifics of on how many swaps are needed to make sure the

original marked edge is no longer present is beyond the scope of this thesis. However,

Static CDG analysis combined with swap provides a promising way to make sure certain

188

edges of CDG responsible for creating deadlock never persists in the runtime CDG of the

network. The backtracking property of SWAP essentially allows any blocked packet to be

unblocked.

We can further augment directed SWAP to prioritize the response packets (packets from

terminating message class of the protocol) over other packets. This, along with the assump-

tion of separate VNets for each message class at the local port of the router (section 8.3)

makes SWAP simultaneously Routing and Protocol level deadlock free.

8.11 Long Term Impact

The growth of multi- and many-core processors places the interconnection network front

and center in architectural designs. The interconnection network will dictate overall sys-

tem performance by efficiently orchestrating data movement. Deadlock is a cornerstone

in interconnection networks and will continue to be the focus for its functional correct-

ness. SWAP represents a fundamental contribution to resolve deadlocks. It proposes a new

elemental operation, ‘swap’, distributed throughout the network.

SWAP views deadlocks as an ordering problem. If any packet can replay back the hop

that lead to deadlock, then deadlock can be resolved. We presented one implementation of

the concept; there can be many others. For example, multiple swaps can occur concurrently

in disjoint portions of the network to further improve scalability.

8.11.1 Salient features of SWAP

• In-place swap of packets, therefore no extra buffers needed.

• Packets are swapped locally between adjacent routers, therefore no global coordination

is needed.

• SWAP is free from deadlock detection scheme’s design and validation overheads. In-

stead it has a configurable knob to control the frequency of swapping packets.

189

• If there is empty VC present at the downstream router, then a swap will not occur. This

naturally reduces the extra link traversal energy due to backtracking at low loads.

• SWAP enables adaptive routing algorithms providing full path diversity without wor-

rying about deadlocks.

Even in OS, deadlocks are viewed as resource dependency problem, however, we be-

lieve if we could view deadlocks as an ordering problem then novel insights can be ex-

tracted and learning from SWAP can be applied directly to these problems.

8.11.2 Going beyond Routing Deadlocks

Learning from SWAP goes beyond resolving routing deadlocks in the interconnection net-

works. The following are the immediate benefits with SWAP:

Protocol level deadlocks

Protocol level deadlock occur when message of class A gets indefinitely blocked by the

message of class B.

To avoid protocol level deadlocks, dedicated sets of VCs are allocated to each message

class which cannot be occupied by packets from other message classes. These dedicated

set of VCs, known as Virtual Network (VNets), are not only present at each input port

of every router but also present at the network interface, in the form of multiple injection

and ejection queues. The extra VNet VC imply a dramatic overhead in terms of power,

area and complexity, that is typically under-utilized, particularly for rarely used packet

classes. As protocols increase in complexity especially due to the rise in heterogeneity in

current systems, the number of VNets will also increase leading to very high area network

implementations.

SWAP provides a way to re-order the packets in the network. This inherently implies

that a packet of one class will never be stuck indefinitely behind the packet of other class.

By carefully orchestrating swap operations, SWAP can not only remove routing deadlocks,

190

but also protocol level deadlock. Thus, SWAP dramatically reduces the power, area and

complexity of routers needed to ensure functional correctness of the NoC, irrespective of

the cache coherence protocol. These benefits can be realized all the way up to network

interface, as now with SWAP capabilities, separate injection and ejection queues need not

be maintained for each message class–unified injection and ejection queues would suffice.

SWAP for modular network design

SWAP localizes the decision of swapping packets to adjacent routers and is agnostic to dif-

ferent link widths and disparate link/router latencies co-existing in the same network.5 This

aspect makes it suitable for plug-n-play designs where the topology is not known, has asym-

metric properties and/or changes over time for example SWAP is readily implementable in

multi-chip modules, chiplet interposer-based systems, off-chip interconnects such as LANs

or datacenter clusters. For implementations such as Ethernet that drop packets in the face of

congestion, SWAP might provide an alternative that allows lossless transmission of packets

by guaranteeing forward progress through swapping. This would avoid overheads associ-

ated with retransmission. How scheduling swaps affect the performance across the range

of systems is an important research question.

Internet could be a new avenue to implement SWAP, as currently during congestion

packets are dropped in internet. This comes with an onerous overhead of keeping a copy of

already transmitted message, retransmitting it in case it gets dropped and sending ACKs/-

NACKs for keeping track of messages. With SWAP even during congestion the packet can

make forward progress by backtracking packets ahead of it.

SWAP for reduced verification cost

SWAP considerably reduces the design and verification cost of the network. Under prior

schemes, significant design complexity is required to ensure deadlock avoidance/resolu-

5Naturally swapping of packets will take longer if the link width is smaller and/or router latencies are
higher (slow swap) compared to normal link-width and router latency (fast swap).

191

tion, either in provisioning of extra VCs, designing of bespoke routing algorithms for par-

ticular topologies, or hardware to detect and resolve deadlocks. With SWAP, one need only

implement the same basic swapping mechanism regardless of network topology, routing

algorithm, etc and the deadlock problem is solved without further difficulty.

SWAP for improved system efficiency

Quality of service: In SWAP, packets are swapped obliviously to resolve potential dead-

lock. With the SWAP hardware in place, packets could be swapped in a non-oblivious

fashion, such as according to packet priority. Thus, a high priority packet could swap its

way through congestion like an ambulance down a congested highway. This would al-

low designers to layer quality-of-service on top of their network design with negligible

additional overhead. Swapping can further be extended into the memory controller queues

present at the edge of network. This allows end-to-end QoS from processor pipeline all the

way to memory.

SWAP for improved system security

Caches are well-known to exhibit timing side channels. In a NUCA cache architecture,

SWAP can be leveraged to mitigate this side channel. Currently, the SWAP period and

swap router selection is static; however, this could be easily modified to be stochastic.

Such modifications of the SWAP mechanism could obfuscate information about network

congestion, bandwidth constraints and even cache block placement often used in side chan-

nel attacks.

For example, the QoS used to provide latency guarantees can delude the adversary

about cache-block placement and defuse his/her attack. We envision QoS combined with

cache replacement policies to open door for secure-QoS research.

192

8.12 Summarizing SWAP with other subactive techniques

Like other subactive techniques, SWAP also does not pay hardware overhead of detecting

deadlock instead it periodically swaps packet in the network, to flush any deadlock that

may have formed. SWAP does mis-route packets, but it is not always true as shown in Fig-

ure 8.5. Because of this limited mis-routing of packets SWAP offers superior performance

compared to other sub-active techniques.

We will quantify the performance of all subactive techniques in chapter 10, here we

present the qualitative summary of subactive techniques proposed thus far.

Next chapter presents the final subactive technique in this thesis. It is called SEEC,

which stands for Stochastic Escape Express Channel. The main idea of SEEC (and its

variant mSEEC) is to choose packets from the network in a round-robin fashion and zoom

them through the network until ejection. The chosen packets are not buffered at intermedi-

ate routers in the network. As we will observe, SEEC provides higher performance among

all subactive techniques as it does not misroute packets.

8.13 Chapter Summary

We present SWAP, a novel technique that enables in-place packet swaps across neighbor-

ing routers. SWAP guarantees deadlock freedom by design as it can dynamically break

any buffer dependence cycles that might form in the network. It enables the network to

take full advantage of available path diversity without requiring turn restrictions, injec-

tion restrictions or escape VCs to avoid deadlocks. A steady rate of packet swaps also

means that deadlocks do not need to be explicitly detected and recovered from. We present

lightweight extensions to implement swaps in our baseline router microarchitecture using

a simple bus connecting all input ports of the router, and a unit to initiate the swap at a

fixed rate. SWAP is the first non-recovery-based deadlock-freedom technique that enables

fully-random minimally adaptive routing with just 1 VC. Moreover, it works seamlessly in

193

systems with irregular network topologies, emanating from heterogeneity, faults or power

gating. SWAP is a powerful idea that goes beyond just deadlock resolution. It allows

packets to escape congested parts of the network and can be overlaid on any network for

enhancing throughput, without adding additional buffers.

Next chapter: SEEC: Stochastic Escape Express Channel, of this thesis is another sub-

active technique which seeks to provide simultaneous routing and protocol deadlock free-

dom with no misrouting. This work offers superior performance compared to schemes

proposed thus far. We also compare its performance to all the prior schemes for both syn-

thetic traffic patterns and real applications. Let’s study this scheme in detail in next chapter.

194

CHAPTER 9

STOCHASTIC ESCAPE EXPRESS CHANNEL (SEEC)

Allocating a free buffer before moving to the next router is a fundamental tenet for packet

movement in NoCs. However, there are two challenges involved. First, if there is a cyclic

dependency of the buffers then it can result in a deadlock. Second, if buffers are full of

packets going towards congested regions, other packets get blocked as well.

In this work, we introduce the idea of stochastic escape express channels (SEEC). The

network interfaces in SEEC send special tokens called seekers to find packets destined

to them and upgrade them to use a novel flow control called Free-Flow (FF). FF-packets

traverse the network minimally from link to link, bypassing routers (bufferlessly) to the

destination. Thus, any deadlock that a FF-packet was originally involved in is guaranteed

to break, without requiring turn restrictions or extra VCs.

FF-packets have an added advantage of bypassing regions of congestion in the network

without needing more buffers. We also present an extension called multi-SEEC (mSEEC)

that enables multiple simultaneous non-intersecting FF packet traversals in the NoC to

enhance throughput further.

We propose SEEC, a novel unified approach for solving the two sets of challenges

discussed above. Instead of explicitly adding VCs in every router, SEEC adds a stochastic

escape express channel that blocked packets can use to make forward progress, without

requiring a free buffer at the downstream router. SEEC does not introduce new VCs or

buffers, but instead relies on the following observation: when packets are blocked at routers

waiting for credits, the links are still idle, as can be seen in Figure 9.1(a) and Figure 9.3(a).

SEEC introduces a new flow-control technique called Free Flow (FF). A FF-packet can

traverse bufferlessly over the links of the network up to its destination network interface

(NIC) via a minimal path, bypassing all the intermediate routers.

195

Table 9.1: Summary Table of Qualitative Comparison of Deadlock Freedom
Mechanisms. P: Proactive, R: Reactive. S: Subactive.

Techniques Full Path
Diversity

No Detect
deadlock

No Mis-
route

No Extra
Buffers

Routing
deadlock
freedom

Protocol
deadlock
freedom

Dally’s the-
ory/Acyclic
CDG (P) [26]

✗ ✓ ✓ ✓ ✓ ✗

Duato’s the-
ory/Escape
VC (P) [52]

✗* ✓ ✓ ✗ ✓ ✗

Bubble [37,
50] (P)

✓ ✓ ✗ ✗ ✓ ✓+

Deflection
(P) [42]

✗** ✓ ✗ ✓ ✓ ✓

Deadlock
Buffers (R)
[49, 47, 65,
38]

✓ ✗ ✓ ✗*** ✓ ✓***

Coordination
(R) [41]

✓ ✗ ✓ ✗**** ✓ ✗

BBR (S) [8] ✓ ✓ ✓++ ✓ ✓ ✗

BINDU (S)
[9]

✓ ✓ ✗ ✓ ✓ ✗

DRAIN (S)
[10]

✓ ✓ ✗ ✓ ✓ ✓

SWAP (S)
[11]

✓ ✓ ✗ ✓ ✓ ✓

SEEC (S) ✓ ✓ ✓ ✓ ✓ ✓
* Within escape VCs: limited path diversity + requires topology information for escape
path.
**At low-loads, full path diversity is available. But at medium-high loads, packets cannot
control the directions or paths along with they are deflected.
***DISHA [47] uses timeout counters present at each input port to choose a packet to
eject from the network. It requires a set of extra buffers to route the packet involved
in deadlock. Some variations of DISHA, such as mDISHA [49] provide protocol-level
deadlock freedom
****SPIN[41] requires a buffer in each router to hold the dynamic deadlock path over
which packets involved in deadlock would move synchronously.
+ Bubble Coloring [50] provides protocol-level deadlock freedom but involves non-
minimal path traversal.
++ BBR provides limited misrouting of packet because of Bubble Exchange subsec-
tion 5.3.1

196

A packet is selected to become a FF-packet by a token called a seeker, that is sent by a

destination NIC to search for any packet in the NoC intended for it, after reserving a buffer

slot at the ejection queue. This guarantees ejection for the FF-packet. We also present an

enhancement called Multi-SEEC (mSEEC) that enables simultaneous non-minimal buffer-

less traversals of multiple FF-packets in the network with no collisions.

Figure 9.1(b) and Figure 9.2(b) illustrate how FF-packets can resolve both routing and

protocol deadlocks. Similarly, in Figure 9.3, the up packet in the SEEC NoC leverages FF

flow-control to bypass the congested region to reach its destination.

This work makes the following contributions:

• We introduce SEEC, a unified approach for deadlock-freedom (both routing and proto-

col) and higher network performance without requiring any routing restrictions, injec-

tion restrictions, escape VCs, virtual networks, or misrouting (like prior schemes).

• We introduce a novel flow-control called Free Flow for bufferless, minimal, non-blocking

traversal of packets all the way to their destinations.

• We present two policies for upgrading packets to use FF. The baseline SEEC policy

enables only one packet in the NoC to use FF at a time; the second, mSEEC, enables

multiple simultaneous non-colliding bufferless FF traversals.

• We evaluate SEEC and mSEEC on a wide range of synthetic workloads and real appli-

cations and observe 34%-40% reduction in average packet latency for real application

and 10%-50% average improvement in throughput for synthetic traffic pattern over the

state-of-the-art solutions at 1/6th area/power budget.

SEEC/mSEEC is the final subactive technique proposed in this thesis unlike BBR and

BINDU, it does not require empty VC or bubble or Bindu. Moreover, unlike SWAP and

DRAIN it does not misroute packets in the network. Table 9.1 contrasts SEEC/mSEEC

against the prior work and subactive schemes presented so far.

Let’s study SEEC in detail and in section 9.11, we would draw the contrast of this

197

technique against prior subactive techniques.

9.1 Background and Related Work

SEEC makes primary contributions in both flow control and deadlock freedom. In this

section, we discuss relevant background and related work in flow control and deadlock

freedom in NoCs.

9.1.1 Flow-Control Optimizations

In packet-switched NoCs, flow control determines the allocation of input buffers to flits

of a packet, to make sure they do not overwrite each other. Credits are the predominant

signaling mechanism for buffers. Credits in the upstream router keep track of the number

of free buffers available at the downstream router; and are used to determine if packets

can be forwarded downstream. To improve performance in NoCs, several proposals have

explored flow control optimizations. Techniques like flit reservation flow control [77] re-

serve buffer resources ahead of flits over dedicated fast links, to reduce credit signaling

delays. In circuit-switched coherence [79], circuits are established on a best-effort basis

to allow packets to travel bufferlessly through the network, only getting latched at each

hop. If link resources are not available for reservation, packets start getting buffered again.

Multiple concurrent forms of flow control have also been explored over multiple distinct

physical networks [80, 81]. Some techniques allow packets to reserve buffers multiple-

hops away, and bypass intermediate router buffers. For e.g., Express Virtual Channels

(EVCs) [82] creates bypass paths of short fixed lengths along the X or Y dimension, be-

tween statically assigned source and sink nodes. The packet between intermediate nodes

gets prioritized using lookahead, while at source and sink nodes the packet gets buffered

in a separate VC called: express VC. Its size depends on the length of express paths, due

to buffer turnaround time considerations, and tends to be deeper than normal VCs. Token

Flow Control (TFC) [83] dynamically creates hints for bypass paths of upto a fixed max-

198

9

5

10

6

5
9

6

10

Deadlock

Resolve!

Baseline SEEC

(c)SEEC allows pkt-10 to bypass pkt-9
and eject out at its dest. router

9

5

10

6

5
9

6
10Deadlock

Resolve!

(b)Empty buffer
breaks deadlock

FF-
pkt

IDLE-linkACTIVE-link

(a)

9

5

10

6

5
9

6
10

Deadlo
ck

5

Next hop as
decided by routing-

algorithm

Destination
Router-5

Router-5

Figure 9.1: Routing Deadlock: (a) Packets’ ability to make forward progress is blocked by
other packets. Arrows represent desired movement direction. (b) SEEC resolves the routing
deadlock by allowing FF pkt (pkt-10) to bypass the buffered pkt (pkt-9) until ejection,
creating an empty buffer, breaking the deadlock. (c) Shows FF-pkt ejecting out of the
network.

Node
1

Node
2

Node
3

Node
4

Node
(K-2)

Node
(K-1)

Node
(K)

Interconnection
Network

Cache

Directory

request-pkt respose-pkt

Finite
Network
Buffers

request queue

response
queue

request
queue

response
queue

empty-slot

Baseline SEEC

Cache

Directory

FF-
pkt

Figure 9.2: Protocol Deadlock: All buffers occupied with request packets. Thus, the re-
sponse packet is stuck indefinitely. Forward progress is only possible by consuming the
response packet. SEEC allows the response packet to become FF and reach its destination
by bypassing all request packets.

199

up

congestion

Baseline
SEEC

Router

IDLE-
link

ACTIVE-
link

Packet is stuck until
congestion clears

congestion

SEEC-
Router congestion

FF pkt

(a) (b)

credit to
upstream router

congestion

(c)
congestion

UP

Down

(d)

dn dn up dn dn
up

dn dn dn dn
up

dn dn

up
UP

Down

UP

Down

UP

Down

UP

Down

Figure 9.3: Head-of-line Blocking due to congestion. (a) A packet going “up” is blocked
by packets going “dn” in the Baseline. (b)-(d) SEEC’s FF flow control allows the “up”
packet to bypass the congested region to reach its destination.

up

congestion

Baseline
SEEC

Router

IDLE-
link

ACTIVE-
link

Packet is stuck until
congestion clears

congestion

SEEC-
Router congestion

FF pkt

(a) (b)

credit to
upstream router

congestion

(c)
congestion

UP

Down

(d)

dn dn up dn dn
up

dn dn dn dn
up

dn dn

up
UP

Down

UP

Down

UP

Down

UP

Down

Figure 9.4: With SEEC, packets are not stuck indefinitely. FF flow control allows packets
to bypass the congested region.

Destination Destination Destination Destination

congestion

UP

Down

(d)

dn dn

dn

(e)
Ejection

Destination

congestion

dn

Baseline SEEC

Router

IDLE-
link

ACTIVE-
link

Packets are stuck until
congestion clears

SEEC-
Routercongestion

FF pkt

(a)

credit to
upstream router

congestion

(b)
congestion

UP

Down

(c)

dn dn
dn

dn dn dn dn
dn

dn dn

dn

UP

Down

UP

Down

UP

Down

Figure 9.5: SEEC’s FF control allows packets to bisect through the congested region to
reach its destination.

200

dn

Baseline

Router

UP

Down

IDLE-
link

credit to upstream
router

dnupup

ACTIVE-
link

dn
Router

UP

Downcredit to upstream
router

dnupup

SEEC

dn

UP

Down

dn
upup

credit to
upstream router

normal pkt

UP

Down

dnup
up

credit to
upstream router

normal pkt

credit to
upstream router

FF pkt

dn

Figure 9.6: SEEC improves throughput by ameliorating the effect of credit round trip delay
and utilizing the otherwise idle-links in the baseline network.

La
te

nc
y

Offered Traffic (bits/sec)
Min latency

given by
topology

Min latency given
by routing
algorithm

Zero load latency
(topology+routing+f

low control)
Throughput

given by
topology

Throughput
given by
routing

Throughput
given by flow

control

Baseline

SEEC

Performance
gain

Figure 9.7: Traditional latency throughput curve. SEEC improves performance by reducing
the effect of credit turnaround time due to its novel flow control

201

imum length using the deadlock free adaptive turn-model routing, by grabbing “tokens”,

which are hints about buffer availability multiple hops away. TFC provides adaptability to

turn model routing at a cost of complex routing algorithm and wiring overhead. Qualitative

comparison of EVC and TFC vs SEEC is present in section 9.10.

Deflection flow control is an alternate approach where an upstream router does not wait

for credits at the downstream router, and blindly forwards the flits of the packet; however, in

the face of contention (where two packets request the same output port), one of the packets

is deflected out a non-productive port, leading to misrouting. This flow control is used in

hot potato routing [43] and in bufferless NoC implementations [42, 45, 44].

SEEC versus prior Flow Control techniques. Free Flow traversal in SEEC is similar

in flavor to bypass in EVC and TFC. However, while EVC and TFC offer opportunistic

bypasses based on hints of buffer availability, SEEC establishes a bypass path all the way

to the destination since a buffer is reserved at the destination NIC. Moreover, it helps with

both performance and deadlocks, while EVC and TFC focus only on performance. We

further delineate SEEC from EVC and TFC in detail under section 9.10.

The traversal of FF packets within SEEC has some similarities to the traversal of golden

packets in CHIPPER [45] and MinBD [44], though in these prior works the goal is to pro-

vide livelock freedom (vs. deadlock freedom and performance in SEEC) and their mech-

anism to upgrade packets is different. Table 9.2 compares SEEC and prior works qualita-

tively.

9.1.2 Deadlock Freedom

Here we examine deadlock freedom from both routing and protocol deadlocks. Rout-

ing deadlocks can occur if packets form a dependence cycle in the NoC, as shown in

Figure 9.1(a), while Protocol deadlocks can occur if messages from terminating mes-

sage classes (e.g., responses) in coherence protocols get blocked by messages from non-

terminating message classes (e.g., requests) [84](See Figure 9.2(a)). Table 9.1 qualitatively

202

Table 9.2: SEEC/mSEEC contrasted against bypass mechanisms in EVC/TFC and
CHIPPER/MinBD flow control.

Property EVC [82]/TFC [83] CHIPPER[45] / MinDB [44] SEEC/mSEEC (This Work)
Bypass Mechanism
Purpose

Higher Throughput (by-
pass congestion)

Livelock Freedom (remove / reduce de-
flections for select packets)

Higher Throughput (bypass con-
gestion) & Deadlock Freedom (re-
move blocked packets from net-
work)

Regular Packet Route Always Minimal Non-minimal (misrouting via deflections
upon contention)

Always Minimal

Bypass Packet Route Always Minimal Always Minimal for Golden, Minimal or
Non-Minimal for Silver

Always Minimal

Bypass Packet Upgrade
Mechanism

Opportunistic based on
buffer availability multi-
ple hops down.

Golden: Fixed global priority based on
unique packet id. Silver: Opportunisti-
cally within router

Explicit seeker messages sent by
end-point NIC to find packets des-
tined for the NIC.

Bypass Path Length
and Buffer Availability
at end-point

Fixed length (EVC);
flexible length based
on buffer availability
(TFC). Bypassing packet
guaranteed a buffer when
it stops.

Bypass path up to destination router for
Golden packet. If no empty slot at des-
tination NIC, packet will be dropped and
destination NIC sends a special message
to sender to re-transmit once slot avail-
able (”Retransmit-Once Flow control”).

Guaranteed path up to destination
NIC for FF packet. Slot at NIC re-
served in advance by seeker; no re-
transmissions needed.

Bypass Path Length Fixed length (EVC);
flexible length based on
buffer availability (TFC).

Bypass all the way till destination router
for Golden packet.

Bypass all the way till destination
NIC for FF packet.

Buffer Availability at
End-point

Guaranteed via EVC/-
token reservation before
packet starts.

Not gauaranteed. If no empty slot at des-
tination NIC, packet will be dropped and
destination NIC sends a special message
to sender to re-transmit once slot avail-
able (”Retransmit-Once Flow control”).

Guaranteed as slot at NIC re-
served in advance by seeker; no re-
transmissions needed.

Packet Bypass Priority Express > Regular Golden > Silver > Regular Free Flow > Regular
Simultaneous Bypass
Paths

Multiple opportunistic
bypass paths.

One guaranteed bypass path (golden
packet) in NoC. Silver packets are local.

Multiple non-overlapping guaran-
teed bypass paths in NoC.

Deadlock Freedom Turn-Model (proactive) Deflection (proactive) SEEC (subactive)
Livelock Freedom No Livelocks with only

minimal routes.
Livelocks possible due to deflections (re-
moved via golden packets).

No Livelocks as there are no non-
minimal routes.

contrasts the various previous approaches to deadlock freedom in the literature with SEEC.

Generally, we categorize routing deadlock-freedom solutions into three categories: proac-

tive (P), reactive (R) and subactive (S), using terminology from DRAIN [10]. Proactive

schemes ensure a deadlock is never created in the first place, reactive schemes detect and

recover, and subactive schemes allow deadlocks to form but guarantee that they get cleared

eventually without requiring explicit detection. In the table, we categorize prior work based

on their key idea, and specify if they are P, R or S, and contrast them across various prop-

erties. We discuss their details here.

203

Dally’s theory/Acyclic CDG (P). Dally and others [85, 34, 36] propose that applying

turn restrictions to packets can lead to an acyclic CDG. A key drawback is that turn restric-

tion packets reduce path diversity and hurt performance.

Duato’s theory/Escape VC (P): These solutions restrict the path that a packet can take

in the network only for one Virtual Channel (VC) per input port, called an Escape VC.

Packets enjoy full path diversity while in normal VCs [74, 52]. The key challenge is that

Escape VCs require an extra VC at each input port for implementation.

Bubble (P): A bubble refers to an empty buffer or VC. The underlying theory [37, 39,

40, 86, 87] is that as long as there is an empty buffer present in a ring, that ring is deadlock

free. The key drawback is global coordination for tracking the bubble. Moreover, when

overlaid on an irregular topology, bubble-based schemes result in non-minimal routing.

Even in regular topologies such as a mesh, overlaying a virtual ring topology to route

packets also results in non-minimal packet traversal.

Deflection (P): Deflection routing argues that as long as packets keep moving every cy-

cle, either towards or away from their destination, the network is deadlock free. It follows

hot-potato routing [43] in which packets keep getting misrouted in the face of contention.

The key drawbacks include non-minimal routes that packets take reach their destinations,

leading to higher latency and dynamic energy, and expensive solutions to guarantee live-

lock freedom [42, 45, 44].

Deadlock Buffer (R): Schemes such as DISHA [47] and its extensions [49, 65, 38]

embed extra deadlock buffers [49] at design-time in all routers, which remain off during

nominal operation. Deadlocks are detected via time-outs and a blocked packets are pro-

gressively routed to their destinations via these deadlock buffers.

Coordination (R): Coordination-based schemes such as SPIN [41] detect deadlock and

synchronously move packets to resolve the deadlock. The key drawback is the complex

deadlock detection circuitry to detect and map the deadlock ring at runtime. Moreover,

it requires global synchronization among the packets that must move simultaneously to

204

resolve the deadlock.

Shuffle (VC-2)

P
er

ce
nt

ag
e

of
 to

ta
l p

ac
ke

ts
 in

je
ct

ed

Figure 9.8: In DRAIN [10], each “drain” spins the contents of all buffers in the network.
This graph plots the distribution of bubbles (empty slots), routed packets (moved in pro-
ductive directions), and mis-routed packets in the network across all drains for the shuffle
traffic pattern. It shows misrouting increasing as injection rates go up for 8x8 Mesh.

Figure 9.9, Figure 9.10, Figure 9.11, and Figure 9.12 shows the sensitivity analysis of

DRAIN[10] in terms of relative %age of packets mis-routed and routed when allowed to

spin obliviously on the DRAIN-path for different synthetic traffic patterns, DRAIN epoch

period and number of hops traversed by packets on the predefined DRAIN path.

Oblivious Packet Shuffling (S): Recently a class of solutions has been proposed which

leverage periodic packet shuffling in the network [8, 9, 11, 10] to remove deadlocks. The

shuffling may be within a router [8], between neighbors [9, 11] or along an embedded ring

across the entire network [10]. The underlying theory is that if packets are periodically

forced to move obliviously in the network then any routing deadlock can be resolved. The

periodic and oblivious nature of packet shuffling overlaid on a deadlock prone minimal

routing algorithm in these solutions ensures deadlock freedom.

A key challenge is that oblivious packet movement may misroute a packet away from

205

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 9.9: Shuffle traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 1k cycle as DRIAN
epoch. Percentage of misrouted packets is consistently higher than that of routed packets

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 9.10: Shuffle traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 4k cycle as DRIAN
epoch. Percentage of misrouted packets is consistently higher than that of routed packets

206

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 9.11: Uniform traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 1k cycle as DRIAN
epoch. Percentage of misrouted packets is consistently higher than that of routed packets

(a) One hop on DRAIN-path (b) Four hops on DRAIN-path (c) Eight hops on DRAIN-path

Figure 9.12: Uniform traffic; 8x8 Mesh, each input port has 2 VCs. Percentage of routed,
mis-routed and free buffers present in the topology until saturation with 4k cycle as DRIAN
epoch. Percentage of misrouted packets is consistently higher than that of routed packets

207

its destination; therefore, a packet may need to traverse the network non-minimally. Addi-

tionally, in pathological cases the deadlock may be slow to resolve.

As Table 9.1 shows, existing subactive solutions are promising alternatives to proac-

tive and reactive schemes as they provide full-path diversity, no extra buffers, and no re-

sources to detect and recover from a deadlock. However, their key downside is misrouting.

Figure 9.8 quantifies the percentage of misroutes in DRAIN [10].1 These misroutes can

adversely affect application tail latencies, as we quantify in subsection 9.9.1.

The most common approach for protocol deadlock freedom today is to use separate

VCs (called virtual networks (VNet) [10]) in the NoC for each message class. As shown

in Table 9.1, Deflection [42], DRAIN [10], Bubble Coloring [50], and mDISHA [49] can

also provide protocol deadlock-freedom without the need for virtual networks. However,

they come at the cost of continuous misrouting, periodic misrouting, non-minimal routes,

and extra buffers, respectively.

SEEC versus prior work. Prior work has shown that deadlocks are quite rare [84, 38,

10] and VCs within routers are highly under-utilized [10]. This means that over provision-

ing VCs and VNets for routing and protocol deadlock-freedom is highly inefficient from

an area and power perspective; in proactive solutions, however, it becomes necessary to

have them for correctness. Subactive solutions [8, 9, 11, 10] are promising alternatives to

proactive and reactive schemes as they provide full-path diversity, no extra buffers, and no

resources to detect and recover from a deadlock. SEEC is also subactive, i.e., it ensures

that deadlocks, even if they were to form, will be broken as packets use FF to exit the

NoC. SEEC guarantees both routing and protocol deadlock freedom with the theoretical

minimum of one VNet with one VC per input port in the NoC. We present a formal proof

later in section 9.3. Moreover, unlike prior subactive schemes that all cause misrouting

(Table 9.1), SEEC is free of misrouting.

SEEC has similarities with DISHA [47] and its extensions [49, 65] as both use circulat-
1We used DRAIN’s open-source code-base [88] to get this data. Simulation configuration details can be

found in subsection 9.7.1.

208

ing out-of-band control messages over a predefined path covering all routers in the network,

to select the packet to eject. However, there are key differences. SEEC does not use time-

out counters to select the packet to eject, and instead sends a special message to proactively

search for one. This can speed up deadlock recovery. Moreover, unlike DISHA that only

triggers upon deadlock detection, SEEC continually allows packets to use FF, enhancing

throughput.

9.2 SEEC

We describe SEEC from concept to implementation. Table 9.3 lists some key terms used

throughout the paper.

As an analogy for SEEC, consider the flow of traffic; cars and trucks on the road are

required to obey traffic signals. A car cannot advance to the next block until the light

turns green (this is analogous to waiting for a credit). However, some vehicles can be

designated to ignore such traffic rules. Emergency vehicles are an example; regular cars

yield to emergency vehicles and let them pass. Similarly in SEEC, one packet (at a time)

in the system gets elevated in priority to use an express path to reach the destination.

9.2.1 Free Flow

We propose a new flow control scheme called Free Flow (FF). A packet using FF is given

priority at each router over regular packets which use credit-based flow control, allowing

its flits to traverse the network bufferlessly, over a minimal route (i.e., minimum possible

hops) all the way to its destination NIC. Unlike deflection flow control (subsection 9.1.1),

there is no misrouting of FF packets. This is ensured by guaranteeing that multiple packets

concurrently traversing the NoC using FF use non-intersecting paths. For the base SEEC

design, there can only be one FF packet in the network at any given time. section 9.4

discusses how multiple FF packets with non-intersecting paths can be guaranteed.

209

Table 9.3: Key Terms in SEEC.

Term Definition
Free
Flow
(FF)

A flow control scheme where packets are not
buffered, and move forward every cycle, without
the need for credits.

Seeker A token sent out by the destination NIC after re-
serving an ejection VC within a specific message
class. It searches for a packet in the NoC intended
for this NIC in that message class.

Seeker
path

A side-band network connecting all routers in the
network over which the seeker visits all routers,
and comes back to its initiator in case it does not
find a packet.

FF
packet

This packet is chosen by the seeker and traverses
to its destination over a minimal path using FF.

Lookahead A signal sent one hop ahead of FF-packet so
that next-hop router prioritizes the movement of
incoming FF packet over the normal buffered
packet.

mSEEC An extension to SEEC where multiple seekers are
sent out at the same time to different network par-
titions. The FF packets use non-overlapping, min-
imal routes.

9.2.2 Overview

In SEEC, all packets nominally use credit flow control. In a round-robin manner, each

destination NIC selects a packet in the network destined for itself to use FF. The mechanism

for selecting such a packet is discussed later in subsection 9.2.3. This packet zooms through

the network without being buffered, by being prioritized to use the link at every hop along

its route, without getting buffered within each intermediate router. This is implemented by

sending a lookahead signal one cycle ahead on a dedicated link, similar to prior work [82,

83]. The lookahead carries the output port of the FF packet, and the intermediate router sets

up its crossbar for the FF packet arriving next cycle, disallowing its own locally buffered

flits from using that output link. As a result, the FF packet can bypass both contention

and deadlock in the network. We describe the detailed operation of the design in the next

section.

210

1 2 3

5 64

8 97

5
1 2 3

5 64

8 97

6

7

8

Packet with
destination-8

82 Sequence
Number

1 2 3

5 64

8 97

9

lookahead8 Seeker for
destination-8

1 2 3

5 64

8 97

(b) (c) (d) (e)
8

Seeker from NIC-8 found
pkt for NIC-8 & is dropped

8 8
FF pkt

9

11

vc0
vc1

vc2
vc3

1 2 3

5 64

8 97

(a)

8

1
Ejection
Queues
at NIC

Reserved the empty
slot for FF-pkt

2Insert ‘Seeker’

NIC Ejection port
reserves a VC at its turn

Seeker
Predefined Path

Seeker traverses
pre-defined path

4

3

Resp.
Req.

Figure 9.13: Step-by-step working of SEEC, (a) Router-8, at its turn, reserves a VC in its
ejection port and inserts a ‘Seeker’ in the network (b) Router-8’s Seeker, traverse the topol-
ogy on a predefined path to look for packets to eject. (c) Seeker finds the packet at router-1,
Seeker gets dropped and this buffered packet now becomes FF-packet (d) After router-8,
router-9 repeats the process of reserving a VC in its ejection port (not shown to save space);
sending seeker and ejecting packet bufferlessly (e) After router-9 (last router), router-1 (first
router) repeats the process. Destination routers take part cyclically for ejecting packet.

9.2.3 Operation Details

System Assumptions. SEEC assumes that the NIC has per-message class ejection VCs, as

shown in Figure 9.13. However, within the NoC, all messages share the same set of VCs.

Separate VNets do not exist, as was shown in Figure 9.2.

Mechanism for choosing FF packet and guaranteeing ejection. SEEC is initiated by

a NIC reserving an ejection VC within a message class, and circulating a Seeker through

the network over a pre-defined path covering all routers to search for any packet intended

for this ejection VC. If the seeker finds such a packet, the packet traverses the network via

FF and the seeker is dropped. Since an ejection VC is reserved before the seeker starts

searching, the FF packet is guaranteed to be consumed. Once the FF packet is ejected, or if

the seeker returns, the control moves in a round-robin manner to ejection VCs of the next

message class at this router, and then to the neighboring router, and so on, to send out their

seekers.

What if the seeker does not find any packet? If the seeker circulates back to the

original router, it indicates that there was no packet in the NoC currently for this message

211

class waiting to get routed to this NIC. The reserved ejection VC is freed up and the same

process is repeated for the remaining ejection VCs. Once all ejection VCs are exhausted,

the router notifies its neighboring router of its turn to send seekers in a round-robin fashion.

What if no ejection VC is free in a message class?

In this case, it passes its turn in a round-robin manner to the next message class, and

eventually to the neighboring router to send its seeker signal instead. However, once a

message class that missed its turn gets a free ejection VC, it is pro-actively reserved for the

next round. No packets are allowed to use this ejection VC until this VC’s next turn for

sending a seeker.

How is the SEEC path implemented? In our implementation, the SEEC path is a ring

through all routers in the NoC (as shown in Figure 9.13). Each router has local state to

store the order in which the seeker should search through all input ports with that router,

and where to forward the seeker next. For mSEEC, that we describe later in section 9.4,

the seekers’ paths no longer span the entire NoC, but instead only within partitions.

What is the policy for searching for packets within the SEEC path? There could

be myriad policies used by the seeker for selecting packets to upgrade to FF. For fairness,

we implement a round-robin policy, where each destination logs the location of the <

router − id inport − id > from where the last FF packet was selected and begins the

search from there. It searches through all routers and ports and returns to its sender if it did

not find a packet.

What if the ejection port is busy when the FF packet arrives? Though the FF packet

is guaranteed to be ejected, it is possible for it to arrive at its destination router while another

multi-flit packet is in the process of getting ejected. The FF packet in this case will take

precedence over the ongoing ejection and the current ejection will wait until the FF-packet

gets ejected from the network. Since the ejection VC for the FF packet was reserved prior

to the seeker being sent, the stalled ejection will not be for the same VC.

212

9.2.4 Walk-through Example

Figure 9.13 shows a walk-through example of SEEC. As discussed in subsection 9.2.3, a

packet is chosen to become FF by its destination NIC. This is done with the help of a seeker.

In this example, router-8 first reserves an ejection VC in the response message class at NIC-

8. It then sends the seeker (Figure 9.13(a)) on a predefined path covering all the routers in

the network at least once. During its network traversal, if the seeker finds a response packet

whose destination is router-8, it converts this normal buffered packet into the FF packet.

In this example, this packet is at router-1 (Figure 9.13(b)). The seeker is dropped and the

newly dubbed FF packet travels minimally to its destination via an express path created

using lookaheads, as shown in Figure 9.13(b). Once this original FF packet is ejected, the

same process is repeated for the next message class. After all message classes have tried

(successfully or unsuccessfully) to receive a FF packet, the next router-id is notified to send

its seeker. This process keeps repeating in a cyclic fashion over the topology (Figure 9.13(c)

and Figure 9.13(d))).

9.2.5 Lookaheads

To allow the FF packet to make forward progress every cycle, and to suppress the movement

of normal packets at the next downstream router through the same output port, a lookahead

signal is sent by the router which accepted the seeker to make its buffered packet FF. This

lookahead signal is sent on its dedicated link one cycle ahead of the data packet, similar

to prior work [82, 83]. The lookahead reserves the output port for the FF packet at the

next downstream router as dictated by the baseline routing algorithm. section 9.5 further

describes the appropriate router micro-architecture modifications over the baseline router

to realize a SEEC router.

The dedicated link width for lookahead is enough to encode the < dest− id outport−

id > for the current FF packet. We expect it to be 9 bit wide for an 8x8 Mesh (6 + 2 + 1):

6 (log(num− routers) + 2 (log(num− outport)) bits for dest id and outport port id + 1

213

valid bit. This is minimal overhead compared to the typically 128 bits wide network links

(Table 9.4).

9.3 Proof of Correctness: Deadlock Freedom Proof

Assumption: In SEEC we assume that the local port of the router has separate VNet

for each message class, this assumption makes sure that response packet gets to enter the

network irrespective of current occupancy of network buffers.

We first prove that SEEC guarantees resolution of protocol deadlocks and then extend

the proof for routing deadlocks.

Assumption: The ejection port at the NIC has separate VCs for each message class of

the protocol.

Definition: Terminating Message Class. We define terminating message class to refer

to a message class that ends the protocol transaction, e.g., responses.

Necessary condition for breaking protocol deadlocks. Messages belonging to termi-

nating message classes should never be indefinitely blocked within the NoC.

Lemma 1: Messages within the ejection VC for a terminating message class in a co-

herence protocol are always guaranteed to be consumed by the cache controller (aka con-

sumption assumption) and do not block waiting for other messages.

Proof: Whenever a request is issued to the NoC, an entry is allocated in an MSHR and

injected into the outgoing request VC at the NIC. The response (data or ACK) arrives in

the response VC at the NIC and will be consumed by the reserved entry at the MSHR for

processing. If the rate of egress to the MSHR is slower than the rate of ingress into the

ejection VC from the NoC, the ejection VC may temporarily be full, but will eventually

become free to eject new packets from the NoC.

Similarly, invalidation requests issued by the coherence mechanism are replied with

acknowledgment (ack) messages. While invalidation request processing may be blocked

by the inability to insert acks, acks are immediately consumed upon receipt at the directory.

214

We cannot list every protocol dependence scenario, but terminating message classes such

as responses/ACKs in protocols are built with the consumption assumption [84].

Lemma 2: A response packet that is causing a protocol deadlock is guaranteed to reach

its destination via FF to break the deadlock.

Proof: Suppose a response packet is stuck in the NoC behind requests and is part of a

protocol deadlock (Figure 9.2(a)). Thus it cannot make forward progress via regular means.

The response message class at its destination will eventually have a free ejection VC for this

specific packet as discussed by Lemma 1 (seen in Figure 9.2). Since each message class at

each NIC gets a fair chance to send a Seeker in a round-robin manner, its destination will

eventually send a seeker and enable this packet to zoom through the network via FF (as

seen in Figure 9.2).

Lemma 1 + Lemma 2 prove that SEEC guarantees protocol-deadlock freedom.

Corollary 1: A request VC at the ejection port will never remain indefinitely blocked.

Proof: Since the network is protocol deadlock free, a request VC will not remain indef-

initely blocked waiting for responses. Suppose a request message class does not have a free

ejection VC during its turn to send a seeker, SEEC will send a seeker for the next message

class. However, Lemma 2 and Corollary 1 prove that all message classes will eventually

get a free ejection VC. Once the message class that missed its turn gets a free VC, this VC

is proactively reserved. No packets are allowed to be ejected into this VC until this VC’s

next turn for sending a seeker. This bounds the number of times a message class might

miss its turn to send a seeker.

Lemma 3: Every packet in a routing deadlock is guaranteed to reach its destination via

FF control.

Proof: From Lemma 2 and Corollary 1, all message classes will eventually get a free

ejection VC and get a chance to send a seeker. This will allow any packets in a cyclic

dependence in the network to use FF to reach their destination, breaking the cycle (as seen

in Figure 9.1).

215

Lemma 3 proves SEEC guarantees routing-deadlock freedom.

Livelock Freedom Proof. SEEC is livelock free because all the packets are routed

minimally through the network. Thus SEEC does not need any additional livelock handling

mechanism like tracking and prioritizing oldest packets [42, 45, 44] or performing network

drains [10].

Point-to-Point ordering. Using FF, packets may get re-ordered from a given source to

its destination. This effect is not unique to SEEC and is also present in adaptive routing

algorithms [35]. Many commercial protocols such as HyperTransport support out-of-order

delivery of messages [89]. For the protocols that do not, we assume re-order buffers for

those message classes that need point-to-point ordering, and leave point-to-point ordering

support for future work.

9.3.1 Applicability of SEEC

SEEC can be applied over any NoC topology and routing algorithm provided they satisfy

the following conditions:

1. The topology can have a mix of bidirectional and unidirectional links, as long as

every source router has a valid path to every destination router.

2. There are separate injection and ejection queues for each message class at the Net-

work Interface. Therefore, there is no protocol-level deadlock at the end nodes.

9.4 Multi-SEEC (mSEEC)

In SEEC, we allow sending one seeker at a time on a pre-defined side-band path; as a

result, there is a maximum of one FF packet at a time within the NoC. However, many

popular network topologies such as meshes have lots of inherent path diversity available;

sending one seeker at a time under utilizes the available path diversity of the topology

for creating express paths. This is the motivation behind multi-SEEC (mSEEC). We first

216

discuss how mSEEC can be implemented in any abstract topology, and then describe our

specific implementation.

To implement mSEEC, the topology needs to be divided into P independent partitions,

and the NICs into N/P groups with P NICs each. Each partition receives a seeker from

a different NIC. mSEEC operates over multiple phases. In the first phase, the P NICs

from the first group simultaneously search for packets which wants to eject out from those

partitions, using their respective seekers. Once the search, followed by FF-packet traversal

is over (which is bounded due to the fixed time it takes for the seeker to traverse to the

furthest router in its partition and the FF-packet to come back), the NICs permute these

independent partitions among themselves. At the end of each phase, the P NICs would

have searched through the entire topology. In the next phase, the next group of NICs

follow the same approach.

To ensure no collisions, the partitions and groups need to be chosen in a way that the

paths of the P seekers do not overlap during the seek portion, and the paths of the P FF-

packets do not overlap during the FF portion of each phase.

In our implementation of mSEEC, we choose the partitions as the columns of the Mesh,

and the groups as the rows of the Mesh. Figure 9.14 shows an example. In phase 0, during

Step 1 (Figure 9.14(a) the three NICs (A, B, C) in row 0 of the Mesh topology simultane-

ously seek packets within Columns 0, 1 and 2. Next, they seek within Columns 1, 2 and 0,

respectively (Figure 9.14(b)). Next, in Columns 2, 0, and 1, respectively (Figure 9.14(c)).

The dotted line represents the path taken by the seekers, and the solid line is the path taken

by the FF packets (which just follow the reverse path of the seekers). Unlike SEEC, where

the SEEC path is an embedded ring (Figure 9.13), mSEEC uses minimal non-overlapping

paths for the seekers.

After the first row finishes seeking packets from all the columns (i.e., the entire topol-

ogy), in Phase 1, the next row now seeks packets in a round-robin manner over the columns

of the topology (Figure 9.14(d)-(f)).

217

G H I

E FD

B CA

G H I

E FD

B CA

G H I

E FD

B CA

A =>A, D, G
B =>B, E, H
C =>C, F, I

A =>B, E, H
B =>C, F, I
C =>A, D, G

A =>C, F, I
B =>A, D, G
C =>B, E, H

step-1 step-2 step-3

group-0

G H I

E FD

B CA

G H I

E FD

B CA

G H I

E FD

B CA

group-1

0 1 2 0 1 2 0 1 2

0 1 2 0 1 2 0 1 2

step-1 step-2 step-3

1

2

0

2

0

1

2

0

1

2

partitions

partitions

Phase-0

Phase-1

(a) (b) (c)

(d) (e) (f)

Figure 9.14: mSEEC implementation. The columns form “partitions” and the rows are
“groups”. In Phase-0, group-0 sends seekers to each partition. Phase-0’s NICs send seekers
to the routers listed after ’=>’. Dotted lines represent the seeker path. FF-packet follows
the same path in the opposite direction. No two paths overlap. Thus all FF-packets will
simultaneously use minimal paths without collisions. In phase-1 double-ended arrows have
been shown to convey seeker and FF-packet paths.

Figure 9.14 shows that each phase has a fixed number of steps, and in each step, there

are fixed cycles involved for it to complete. For example, in Phase 0, Step 1, a seeker will

take at most 2 hops to cover its own column(partition). However, in Phase 0 Step 2 the

seeker from router-C’s NIC will take 4 hops. This pre-computed static time-bound can be

used to schedule each phase to realize mSEEC.

There exist alternate ways of partitioning the network to implement mSEEC, which we

leave as future work.

218

SEEC-Router

Buffer
less

Input buffers

VNet-1
VNet-2

VNet-k

Input Port-i

FLIT

Input buffers

VNet-1
VNet-2

VNet-k

Local Input Port
Seeker

generator

grant outport to
bufferless pkt

Crossbar Switch

Seeker port ptrSeeker

input port

Network-
In Link

From NIC

ON/OFF
Signal

To NIC

Eject

myTurn?

Output
latch

Switch Allocator

VC AllocatorRoute Compute

AND

buffer
less

lookahead from
upstream router FF pkt

stay here
FF packet

bypass path

local register
<router-id_inport-id>

Seeker
Path

Network-
Out Link

Seeker
Network-out

Link

Seeker
From

NIC Link

Seeker
Network-IN

Link

generate
Seeker

Lookahead
Generator

Seeker
Ports

Figure 9.15: SEEC router microarchitecture, all mux signals are set up by the lookahead
signal in advance, this allows seamless traversal of bufferless FF packet.

9.5 Router Microarchitecture

Figure 9.15 shows the microarchitecture of a SEEC router.

A FF packet entering the router bypasses the router input port and crossbar (setup in the

previous cycle by the lookahead) and is latched at the output port, as shown in the figure.

The hardware required to implement SEEC is described next.

• Prioritization logic: This is added in the form of an extra mux, which allows the FF

packet to take priority to acquire the output port over the current buffered packet in the

network.

219

• Lookahead signal: A lookahead signal is sent one cycle in advance before the FF packet

traverses the network, and sets the mux and prioritization logic appropriately. It is

important to note that lookaheads are generated by input ports and not by the NICs.

At the destination router, these lookaheads are used to temporarily stall the ongoing

ejection (if any) to prioritize the ejection of FF-packet.

• Seeker logic: Seeker is inserted into the network in a round-robin fashion. Once the

router has ejected a FF-packet, it signals the next router to insert the Seeker. Seeker also

searches the appropriate router/input port in a round-robin fashion. Destination router

keeps track of the last router/input-port from which it made the FF-packet. Seeker

follows the predefined path which visits each router of the network at least once in a

cyclic fashion.

• local-register: Each router has a local register which stores the < router− id inport−

id > from where the last FF packet was selected for ejection at this NIC. The seeker

generated by this NIC would start looking for the packet starting from this < router−

id inport− id >, to maintain a round-robin search policy.

Seeker port ptr is used to provide the round-robin priority to all the input ports of the router

to get the chance of becoming FF, after consuming the seeker. The signals mentioned in

the SEEC router (Figure 9.15) are setup by the lookahead signal prior to the arrival of FF

packet. The highlighted components in the router are unique to SEEC. These components

include a 16-bit local register, a small table holding the seeker path, and a few muxes.

The total area overhead comes to be around 2% over a baseline dimension-ordered (DoR)

router, as we quantify in subsection 9.7.2.

9.6 SEEC across Buffer Management Schemes

Store and Forward. SEEC naturally works in Store and Forward. As the complete packet

is present in the network buffers for SEEC to make this packet traverse to its destination

with the help of FF control.

220

Virtual Cut Through (VCT). In VCT, both buffers and links are allocated at packet

granularity. It might happen that the complete packet is not present in the buffer, but re-

maining flits would be following the head-flit in close succession. The seeker makes the

Head flit of a packet FF and records this information at the router. The remaining flits of

the packet that subsequently arrive follow the head in the same FF manner.

Wormhole. In wormhole, unlike VCT, buffers may be smaller than the number of

flits in the largest packet. Allowing adaptive routing with wormhole flow control adds the

constraint that VCs must only contain one packet at a time to avoid deadlocks [26]. This

requirement makes it easy to extend SEEC to wormhole networks. The seeker need only

examine the flit at the front of a given VC queue, only upgrading it if it is a head flit. If

the head is upgraded to FF, the remaining flits of the packet that subsequently arrive in this

queue are marked FF as well.

This approach will work even if the wormhole queue has the minimum depth of 1-flit.

SEEC thus has added advantages over other deadlock-freedom schemes such as SPIN [41],

SWAP[11], and BLESS[42] as it does not require packet truncation to support wormhole,

not does it re-order flits within the packet [42].

9.6.1 SEEC/mSEEC over irregular Topologies

SEEC and mSEEC are not tied to any particular topology. For arbitrary irregular topologies,

seekers from NICs can be sent over a fixed virtual ring path through the entire network [10].

If no packet is found, the seeker would naturally come back to the initiator NIC and

get dropped. Then the next NIC will send a seeker over the same path in a round-robin

manner and so on. For mSEEC, independent and non-overlapping seeker paths must be

established, as discussed in section 9.4. We leave this for future work.

221

Table 9.4: Key Simulation Parameters.

Real application simulation parameters

Core 16 cores; x86 ISA (PARSEC, SPLASH-2), 1 GHz
Out of Order cores, No prefetcher

L1 Cache Private, 32kB Ins. + 64kB Data
4-way set associative

Last Level Cache
(LLC)

Shared, distributed, 2MB
8-way set associative

Cache Coherence MOESI, VNet=6
Network parameters

Topology 4x4 Mesh, 8x8 Mesh, and 16x16 Mesh (synthetic traffic)
4x4 Mesh (PARSEC and SPLASH-2)

Routing Algorithm

DoR (XY)
Turn-model (West-First)
Bufferless (CHIPPER, MinBD)
Escape VC (West First in Escape VC)
Fully adaptive random (SPIN, SWAP, DRAIN, SEEC, mSEEC)

Router Latency 1-cycle

Virtual Network
6-VNet (Escape VC, SPIN, SWAP)
1-VNet (DRAIN,SEEC, mSEEC)
2 VCs/VNet

Buffer Organization
Virtual Cut Through.
Single packet per VC
Mixed single-flit (request, ack) and five flit (response) packets

Link Bandwidth 128 bits/cycle

0
0.2
0.4
0.6
0.8
1

Area Power

N
or

m
al

iz
ed

 R
ou

te
r

A
re

a
an

d
P

ow
er

Escape VC SPIN SWAP DRAIN SEEC

Figure 9.16: Router area and static power comparison.

222

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42 0.52 0.62Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP DRAIN SEEC multi-SEEC-row Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP DRAIN SEEC multi-SEEC-row Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP DRAIN SEEC mSEEC Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42 0.52 0.62Av
er

ag
e

pa
ck

et
 la

te
nc

y (
cy

cle
s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP
DRAIN SEEC multi-SEEC-row Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN DRAIN

SWAP SEEC multi-SEEC-row Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP DRAIN SEEC multi-SEEC-row Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42 0.52 0.62Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP
DRAIN SEEC multi-SEEC-row Chipper minBD

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN DRAIN

5
10
15
20
25
30
35
40
45
50

0.02 0.07 0.12 0.17 0.22

Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP DRAIN SEEC multi-SEEC-row Chipper minBD

A
ve

ra
ge

 p
ac

ke
t

la
te

nc
y

(c
yc

le
s)

A
ve

ra
ge

 p
ac

ke
t

la
te

nc
y

(c
yc

le
s)

A
ve

ra
ge

 p
ac

ke
t

la
te

nc
y

(c
yc

le
s)

Injection Rate (flits/node/cycle)
0.02 0.12 0.22 0.32 0.42 0.52 0.62 0.02 0.12 0.22 0.32 0.42

Injection Rate (flits/node/cycle)
0.02 0.120.07 0.17 0.22

Injection Rate (flits/node/cycle)

Injection Rate (flits/node/cycle)
0.02 0.12 0.22 0.32 0.42 0.52 0.62

Injection Rate (flits/node/cycle)
0.02 0.12 0.22 0.32 0.42 0.52 0.62

0.02 0.12 0.22 0.32 0.42
Injection Rate (flits/node/cycle)

0.02 0.12 0.22 0.32 0.42
Injection Rate (flits/node/cycle)

0.02 0.120.07 0.17 0.22
Injection Rate (flits/node/cycle)

0.02 0.120.07 0.17 0.22
Injection Rate (flits/node/cycle)

XY WestFirst EscapeVC SPIN SWAP DRAIN SEEC mSEECChipper MinBD

Transpose
4x4 Mesh

Transpose
8x8 Mesh

Transpose
16x16 Mesh

Shuffle
4x4 Mesh

Bit Rotation
4x4 Mesh

Shuffle
16x16 Mesh

Shuffle
8x8 Mesh

Bit Rotation
16x16 Mesh

Bit Rotation
8x8 Mesh

Figure 9.17: Latency curve for different traffic pattern across network sizes. SEEC and
mSEEC out-performs the current state-of-art solutions

0

10

20

30

vc-1 vc-2 vc-4

Lo
w

 L
o

ad
 L

at
en

cy

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

0

5

10

15

20

25

vc-1 vc-2 vc-4

Lo
w

 Lo
ad

 La
te

nc
y

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

0

5

10

15

20

25

vc-1 vc-2 vc-4

Lo
w

 L
oa

d
La

te
nc

y

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

0

5

10

15

20

25

vc-1 vc-2 vc-4

Lo
w

 L
oa

d
La

te
nc

y

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

VC-1 VC-2 VC-4

Lo
w

 L
oa

d
La

te
nc

y

10

0

20

30

5

15

25

10

0

20

Lo
w

 L
oa

d
La

te
nc

y

VC-1 VC-2 VC-4

Bit Rotation
4x4 Mesh

Bit Rotation
16x16 Mesh

VC-1 VC-2 VC-4 VC-1 VC-2 VC-4

VC-1 VC-2 VC-4 VC-1 VC-2 VC-4

Bit Rotation
8x8 Mesh

Transpose
4x4 Mesh

XY WestFirst SPIN SWAP DRAIN SEEC mSEEC

0

10

20

30

vc-1 vc-2 vc-4

Lo
w

 L
o

ad
 L

at
en

cy

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEC-rowTranspose
8x8 Mesh

0

10

20

30

vc-1 vc-2 vc-4

Lo
w

 L
oa

d
La

te
nc

y

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-rowTranspose
16x16 Mesh

Figure 9.18: Low load latency for Bit Rotation and Transpose, traffic pattern. Topology of
increased size 4×4/8×8/16×16 Mesh.

223

0
0.1

0.2

0.3

0.4

0.5
0.6

vc-1 vc-2 vc-4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row
0

0.1

0.2
0.3

0.4

0.5

0.6

vc-1 vc-2 vc-4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

S
at

. T
hr

ou
gh

pu
t

0.1

0.3

0.5

0.2

0

0.4

0.6

VC-1 VC-2 VC-4

Bit Rotation
4x4 Mesh

Transpose
4x4 Mesh

S
at

. T
hr

ou
gh

pu
t

0.1

0.3

0.5

0.2

0.4

0.6

0
VC-1 VC-2 VC-4

VC-1 VC-2 VC-4

VC-1 VC-2 VC-4

VC-1 VC-2 VC-4

XY WestFirst SPIN SWAP DRAIN SEEC mSEEC

0

0.1

0.2
0.3

0.4

0.5

0.6

vc-1 vc-2 vc-4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

0

0.1

0.2
0.3

0.4

0.5

0.6

vc-1 vc-2 vc-4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-rowBit Rotation
8x8 Mesh

Bit Rotation
16x16 Mesh

0
0.1

0.2

0.3

0.4

0.5
0.6

vc-1 vc-2 vc-4

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

0
0.1

0.2

0.3

0.4

0.5
0.6

vc-1 vc-2 vc-4

Sa
tu

ra
tio

n T
hr

ou
gh

pu
t

XY WestFirst SPIN SWAP DRAIN SEEC multi-SEEC-row

Transpose
8x8 Mesh

Transpose
16x16 Mesh

VC-1 VC-2 VC-4

Figure 9.19: Saturation Throughput for Bit Rotation and Transpose traffic. Topology of
increased size 4×4/8×8/16×16 Mesh.

0

0.05

0.1

0.15

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut Bit Rotation

VC-1

S
at

ur
at

io
n

Th
ro

ug
hp

ut

0

0.05

0.10

0.15

4x4 8x8 16x16
0

0.05

0.1

0.15

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

4x4 8x8 16x16

Uniform Random
VC-1

0
0.05

0.1

0.15
0.2

0.25

0.3

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

0
0.05
0.10
0.15
0.20
0.25
0.30 Bit Rotation

VC-2

4x4 8x8 16x16
0

0.05
0.1

0.15
0.2

0.25
0.3

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

4x4 8x8 16x16

Uniform Random
VC-2

0
0.05
0.10
0.15
0.20
0.25
0.30

0
0.1

0.2
0.3
0.4
0.5
0.6

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

4x4 8x8 16x16

Bit Rotation
VC-4

0
0.1
0.2
0.3
0.4
0.5
0.6

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

0
0.10
0.20
0.30
0.40
0.50
0.60 Uniform Random

VC-4

XY SWAP-XY SEEC-XY

0

0.05

0.1

0.15

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

S
at

ur
at

io
n

Th
ro

ug
hp

ut

0

0.05

0.10

0.15

4x4 8x8 16x16

Bit Rotation
VC-1

0

0.05

0.1

0.15

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

4x4 8x8 16x16

Uniform Random
VC-1

0
0.05

0.1
0.15

0.2
0.25

0.3

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

0
0.05
0.10
0.15
0.20
0.25
0.30

4x4 8x8 16x16

Bit Rotation
VC-2

0
0.05

0.1
0.15

0.2
0.25

0.3

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

0
0.05
0.10
0.15
0.20
0.25
0.30 Uniform Random

VC-2

4x4 8x8 16x16
0

0.1
0.2
0.3
0.4
0.5
0.6

4x4 Mesh 8x8 Mesh 16x16 Mesh
Sa

tu
ra

tio
n

Th
ro

ug
hp

ut
0

0.10
0.20
0.30
0.40
0.50
0.60

4x4 8x8 16x16

Bit Rotation
VC-4

0
0.1
0.2
0.3
0.4
0.5
0.6

4x4 Mesh 8x8 Mesh 16x16 Mesh

Sa
tu

ra
tio

n
Th

ro
ug

hp
ut

0
0.10

0.20
0.30
0.40
0.50
0.60

0
0.10
0.20
0.30
0.40
0.50
0.60

4x4 8x8 16x16

Uniform Random
VC-4

WF SWAP-WF SEEC-WF

Figure 9.20: Baseline routing algorithm is deadlock free. SEEC provides higher perfor-
mance (higher saturation throughput) when augmented with baseline routing algorithm.
We evaluated it using XY and West First (WF) on a 4×4, 8×8 and 16×16 Mesh.

0
0.2
0.4
0.6
0.8
1

1.2
1.4
1.6
1.8

Bodytrack Canneal FFT FMM Lu_cb Ocean_cp Volrend Average

Normalized Runtime

Bodytrack Canneal FFT FMM Lu_cb Ocean_cp Volrend Average

Bodytrack Canneal FFT FMM Lu_cb Ocean_cp Volrend Average0

0.2
0.4

0.6

0.8
1

1.2
1.4

1.6

1.8

Bodytrack Canneal FFT FMM Lu_cb Ocean_cp Volrend Average

Normalized Runtime

XY WestFirst EscapeVC(WF) SPIN SWAP DRAIN(1-VN,2-VC) SEEC(1-VN,2-VC) SEEC(1-VN,12-VC) mSEEC(1-VN,2-VC) mSEEC(1-VN,12-VC)

0
10
20
30
40
50
60
70
80
90

Bodytrack Canneal FFT FMM Lu_cb Ocean_cp Volrend Average

Average Packet Latency

Figure 9.21: Average packet latency and normalized runtime (to XY routing) of
applications in a 4×4 mesh using full system configuration with gem5[7] using
MOESI hammer[64] cache coherence protocol.

224

1

10

100

1000

10000

100000

1000000

Canneal FMM Lu_cb Ocean_cp Radix Average

Max Packet Latency
XY WF Escape-VC SPIN SWAP DRAIN SEEC SEEC-XY SEEC-WF SEEC-Esc VC mSEEC

m
ax

 p
ac

ke
t l

at
en

cy
 (C

yc
le

s)

Figure 9.22: Experiment done on a regular 4×4 Mesh with different deadlock freedom
schemes. The y-axis is a log scale latency in terms of maximum network cycles, that a
packet has incurred.

9.7 Evaluation

9.7.1 Methodology

We evaluate SEEC using gem5[7] with the Garnet2.0[59] network model and Ruby mem-

ory model. We use DSENT to model power and area for an 11nm technology node. We

compare SEEC and mSEEC against state-of-the-art techniques using both synthetic traffic

and full-system applications. Table 9.4 lists our simulation parameters.

Baselines. We compare SEEC and mSEEC against state-of-the-art proactive, reac-

tive and subactive solutions (subsection 9.1.2). For proactive, we pick XY, West-first, and

Escape VC (using west first routing within the escape VCs and random routing in the reg-

ular VCs). We also run CHIPPER[45] and MinBD[44]. For reactive, we compare against

SPIN [41] as it showed superior performance to other reactive solutions [38, 47]. For

subactive, we compare against SWAP [11] and DRAIN [10]. SPIN, SWAP, DRAIN and

SEEC/mSEEC all use fully adaptive random minimal routing to provide full path diver-

sity to the network packets, unless explicitly stated otherwise. Adaptive routing uses the

number of free VCs at the downstream routers to decide the direction, given a choice.

To avoid protocol-level deadlocks, XY, West-first, Escape VC, SPIN and SWAP all

use 6 VNets as dictated by the MOESI hammer cache coherence protocol [7]. DRAIN

and SEEC/mSEEC use 1 VNet. For performance simulations, we consider 2VC/VNet for

225

all systems. For SEEC/mSEEC, we evaluate two configurations: iso-hardware i.e., total

number of VCs per input port is same (total of 12 VCs for 6-VN, 2-VC) and iso-VC-VNet

i.e., number of VCs per VNet is constant irrespective of number of VNets (total of 2 VCs)

We use the notation of (k-VN, p-VC) to further clarify the distinction. In our results, latency

is shown in cycles and saturation throughput is shown in packets received/node/cycle.

Workloads. SEEC/mSEEC is evaluated on both real applications and synthetic traffic.

Applications from the PARSEC-3.0 [33] and SPLASH-2 [32] benchmark suites are used.

We evaluate synthetic traffic with a mix of 1-flit and 5-flit packet sizes. The simulator

was warmed for 1000 cycles to remove any effects due to empty queues in the packet

latency statistics. Thereafter, a fixed number of tagged packets are injected by each node

in the network. Once any core has injected its share of tagged packets, it keeps injecting

normal packets. Simulation finishes when all the injected tagged packets are ejected from

the network. Statistics are reported for tagged packets. This mechanism for collecting

statistics ensures that any long tail latencies for tagged packets are captured in the final

statistics.

9.7.2 Area and Power

The major benefit of SEEC is area and power savings due to its protocol-level deadlock

freedom approach. Fig. 9.16 shows the normalized area and power breakdown, when com-

pared to Escape VC, SPIN, SWAP and DRAIN.

We implement the configuration with the minimum number of buffers required by the

router for each scheme for the NoC to function correctly. Thus, Escape VC uses 7 VC (1

VC per Vnet + 1 shared VC for adaptive routing), SPIN and SWAP use 6 VCs (1 VC per

Vnet), DRAIN and SEEC use 1.

Escape VC requires an extra set of buffers at each input port, therefore it has the highest

area and static power. SPIN and SWAP both can work with only one VC per virtual net-

work. Since they are not free from protocol-level deadlocks, they have buffers per virtual

226

network. SPIN imposes ∼15% higher area and power compared to a standard VC router

with XY routing, because of its deadlock detection and global coordination circuitry.

SWAP imposes ∼4% overhead over an XY router because of the swap bus and swap

management unit.

SEEC has limited overhead due to extra muxes and signaling. Overall, SEEC reduces

the router area by 73% over escape VC and ∼50% over SPIN and SWAP. The SEEC Router

has 77% lower static power compared to escape VC and ∼60% lower power compared to

SPIN and SWAP. Recently proposed DRAIN [10] has similar area and power overhead as

SEEC as it is also routing and protocol deadlock free with 1 VNet. DRAIN’s overhead is

the time-out counters and FSM for coordinating a periodic drain [10].

9.8 Analysis with Synthetic Traffic

Figure 9.17 shows latency-throughput curves for SEEC/mSEEC when compared against

the baselines.

Results are collected with a 4-VC per input port router configuration. SEEC is as good

as or better than all prior works across different traffic patterns and topology sizes.

On average across topology sizes, SEEC provides 65% higher throughput over the best

proactive solutions (Escape VC[74]), 50% over reactive (SPIN[41]) and 10% over recently

proposed subactive solutions (SWAP[11], DRAIN[10]). SEEC provides 2× – 3× through-

put improvement compared to sister bufferless schemes (CHIPPER and MinBD). mSEEC

pushes the envelope further, due to multiple FF packets creating express paths in the NoC.

Its relative performance over SEEC increases as topology size increases from 4×4 Mesh to

16x16 Mesh because of higher path diversity. mSEEC performs 20% better in 4×4 Mesh,

25% better in 8×8 Mesh and 40% better in 16x16 Mesh on average than SEEC.

Figure 9.18 shows the effect of SEEC/mSEEC on low load latency with increased num-

ber if VCs and network size. Low load latency is independent of routing algorithm (given

minimal routing) and the number of VCs. Low load latency does depend on the traffic pat-

227

tern and the size of topology. It monotonically increases with increase topology size. All

networks have similar performance at low-loads. XY and West First both are minimal rout-

ing algorithms; at very low load there is no contention of packets. SPIN would not detect

deadlock as its deadlock detection threshold will not be reached at low load. SWAP does

not shuffle packets at low load because the downstream router will have empty ports. And

latency hits due to misroutes in DRAIN are minimal. And express paths in SEEC/mSEEC

do not help much as the network is uncongested anyway. mSEEC shows a slight latency

improvement in a few cases.

Figure 9.19 compares the throughput of SEEC/mSEEC with other schemes, across

topology sizes and number of VCs per input port. Here SPIN, SWAP, SEEC, and mSEEC

use fully adaptive random routing. mSEEC provides the highest throughput in all of the

cases, followed by SEEC an then SWAP, DRAIN. A generic trend shown by these graphs

is the decrease in saturation throughput with increase in topology size as expected. In

Figure 9.19, XY and WF routing suffer from lowest throughput because they restrict the

path packets can take in the network. SPIN suffers lower saturation throughput than SWAP,

DRAIN, and SEEC because at saturation the deadlock detection algorithm kicks in and its

probes hinder the forward movement of packets. SWAP and DRAIN have lower saturation

throughput than SEEC because of misrouting.

The difference between DRAIN and SWAP is that SWAP causes local pair-wise move-

ment of packets while DRAIN proposes network-wide movement of packets. SEEC/m-

SEEC is free from such challenges and always routes packets minimally, while providing

full path diversity.

9.8.1 FF vs Regular Packet Distribution

Figure 9.23 plots the percentage of FF packets (i.e., packets that got promoted to FF any-

time during their traversal) received as a function of injection rate for uniform random

traffic. It is not surprising to see that post saturation, heavy congestion and high likelihood

228

0

20

40

60

80

100

0.02 0.12 0.22 0.32

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Transpose
8x8 Mesh

VC-4

0

20

40

60

80

100

0.02 0.12 0.22 0.32

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Uniform Random
8x8 Mesh

VC-4

0

20

40

60

80

100

0.02 0.07 0.12 0.17 0.22

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Uniform Random
8x8 Mesh

VC-2

0

20

40

60

80

100

0.02 0.07 0.12 0.17 0.22

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Bit Complement
8x8 Mesh

VC-2

0

20

40

60

80

100

0.02 0.07 0.12 0.17 0.22

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Transpose
8x8 Mesh

VC-2

0

20

40

60

80

100

0.02 0.07 0.12 0.17 0.22

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Shuffle
8x8 Mesh

VC-2

0

20

40

60

80

100

0.02 0.12 0.22 0.32

%
ag

e
of

 F
F

pa
ck

et
s

Injection rate (packets/node/cycle)

Bit Complement
8x8 Mesh

VC-4

0

20

40

60

80

100

0.02 0.12 0.22 0.32

%
ag

e
of

 FF
 p

ac
ke

ts

Injection rate (packets/node/cycle)

Shuffle
8x8 Mesh

VC-4

Figure 9.23: Percentage breakdown of FF versus Regular packets for synthetic traffic on a
8x8 Mesh.

of deadlocks in uniform random traffic [41] leads to almost every packet using SEEC to

exit the network. For traffic patterns that have fewer average hops (e.g., shuffle) or less

deadlock-prone (e.g., transpose [41]), the percentage was found to saturate at ∼10-30%.

Figure 9.24 breaks down the latency distribution of the received packets (both regular

and FF) across the buffered traversal versus the bufferless (FF) traversal. A very interest-

ing trend is observed here. While one may expect FF packets to be “faster” than regular

packets, we observe the reverse,

both at low-injection rates and especially post saturation. This can be explained by the

fact that the FF packets are those that were actually blocked at some router (and promoted

via explicit seekers) and hence show a higher percentage of buffered time compared to

unblocked packets that reached their destinations via a regular traversal. The bufferless

component of the latency is quite small, as expected. These results points to potential

future work on leveraging SEEC to enhance QoS.

9.8.2 SEEC over deadlock-free NoC

In the next experiment, we demonstrate the performance benefits of SEEC beyond deadlock-

freedom. We run both SWAP and SEEC over NoCs using XY and West-first routing (inher-

ently deadlock-free). Figure 9.20 shows the results for throughput. We found that SWAP

229

0

20

40

60

80

100

Reg FF Reg FF Reg FF Reg FF Reg FF Reg FF Reg FF Reg FF Reg FF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Injection Rate (packets/node/cycle)

Bit Complement
8x8 Mesh

VC-4

Buffered Bufferless

0
20
40
60
80

100
120
140
160
180
200

Reg FF Reg FF Reg FF Reg FF Reg FF Reg FF

0.02 0.04 0.06 0.08 0.1 0.12

Av
er

ag
e

La
te

nc
y (

cy
cle

s)

Injection Rate (packets/node/cycle)

Uniform Random
8x8 Mesh

VC-2

Buffered Bufferless

0

20

40

60

Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Av
er

ag
e

La
te

nc
y (

cy
cle

s)

Injection Rate (packets/node/cycle)

Transpose
8x8 Mesh

VC-2

Buffered Bufferless

0

20

40

60

80

Reg FF Reg FF Reg FF Reg FF Reg FF Reg FF

0.02 0.04 0.06 0.08 0.1 0.12

Av
er

ag
e

La
te

nc
y (

cy
cle

s)

Injection Rate (packets/node/cycle)

Bit Complement
8x8 Mesh

VC-2

Buffered Bufferless

0

20

40

60

80

Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF Re
g FF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

Av
er

ag
e

La
te

nc
y (

cy
cle

s)

Injection Rate (packets/node/cycle)

Shuffle
8x8 Mesh

VC-2

Buffered Bufferless

0
20
40
60
80

100
120
140
160
180
200
220
240

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Injection Rate (packets/node/cycle)

Uniform Random
8x8 Mesh

VC-4

Buffered Bufferless

0

20

40

60

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Injection Rate (packets/node/cycle)

Transpose
8x8 Mesh

VC-4

Buffered Bufferless

0

20

40

60

80

100

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

Re
g FF

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22 0.24 0.26 0.28 0.3 0.32

Av
er

ag
e

La
te

nc
y

(c
yc

le
s)

Injection Rate (packets/node/cycle)

Shuffle
8x8 Mesh

VC-4

Buffered Bufferless

Figure 9.24: Latency breakdown of FF versus Regular packets for synthetic traffic on a 8x8
Mesh.

can either increase or decrease the saturation throughput of the baseline deadlock-free NoC,

depending on whether the swaps led to a majority of packets getting routed towards pro-

ductive directions or misrouted away from their destinations. This can be seen with the

West First routing and bit-rotation traffic in Figure 9.20. SEEC, on the other hand, con-

sistently either improves throughput, or keeps it the same. We observe higher throughput

enhancements over baseline deadlock free routing on the 4×4 Mesh compared to 16×16

Mesh.

230

9.9 Application results

Figure 9.21 shows average packet latency and runtime improvement with SEEC/mSEEC

when compared against XY, WF, Escape VC, SPIN, SWAP, and DRAIN. Other schemes

use 6 VNets to provide deadlock freedom, while SEEC is configured with single VNet. We

evaluated SEEC in two configurations: (1) only 2 VCs per input port (isoVC-per-VNet) and

(2) total equal VCs shared across virtual networks. SEEC (1-VN, 2-VC) performs similar

to SPIN and better than XY, WF, Escape VC and SWAP in average packet latency at 1/6th

buffer area. With equal number of VCs, SEEC shows 34% improvement in packet latency

whereas mSEEC shows 35% improvement over subactive SWAP/DRAIN and around 38%

improvement over proactive and reactive approaches at 1/6th of hardware cost. At iso-

hardware cost mSEEC provides 40% improvement on average. Both SEEC and mSEEC

provide 5% average improvement in the total runtime of applications.

9.9.1 Impact on Application Tail latency

We measure tail latency on real applications running in gem5 full-system simulation. Fig-

ure 9.22 shows the tail latency incurred by the packets in the network. Note the Y-axis is a

log scale. On average, XY, West-first and Escape VC have similar tail latencies; however,

SPIN has an order of magnitude higher maximum packet latency. This is because the ex-

pensive deadlock detection of SPIN prioritizes the movement of deadlock detection probes

over actual packets [41]. This can further slow down the movement of actual packets in the

network. In the extreme case, this leads to slowdown for certain packets.

We also observe that DRAIN has the highest tail packet latency among all other schemes

for MOESI hammer cache coherence protocol; this is attributed due to frequent periodic

mis-routing of packet as shown earlier in Figure 9.8.

SWAP performs similar to XY, WF and Escape VC. SEEC outperforms all baselines.

Results on tail packet latency are further improved when SEEC is augmented with XY rout-

231

ing. We observed an order of magnitude lower latency with SEEC-XY compared against

other schemes.

9.10 Discussion

SEEC has some similarities with previous works such as Token Flow Control[83] and Ex-

press Virtual Channel[82], as SEEC also allows packets to bypass the intermediate routers.

However, main takeaway is that SEEC is a unified approach to provide routing and pro-

tocol level deadlock freedom, while previous works ([83], [82]) caters to provide higher

performance in the network. We further delineate these work from SEEC in the following

sub-sections.

9.10.1 SEEC compared to Express Virtual Channel (EVC)

Express Virtual Channel allows packets to zoom multiple intermediate routers from its

source node to destination node using prioritization logic. There is a little overlap of EVC

compared to SEEC as latter also uses prioritization logic to allow FF packets to zoom

through the network till ejection. Apart from it EVC is an orthogonal approach to improve

network performance by enabling higher network link utilization where SEEC is a unified

approach to provide routing level and protocol level deadlock freedom in interconnection

networks. EVC uses extra virtual channel per input port of the router in the form of express

virtual channel (evc) and remaining virtual channels are tagged as normal virtual chan-

nel (nvc). Packets on evcs are prioritized over nvcs. This prioritization logic enables the

evcs packets to bypass few stages in the router pipeline and hence can use more cycles in

traversing the links compared to remain buffered in the routers. This results in higher link

utilization. To allow evcs-packets to bypass the intermediate routers, credit signaling of

evcs is used which bypasses intermediate routers. This results in higher buffer turnaround

time, because of which evcs are expected to be deeper compared to nvcs. EVC uses Di-

mensional ordered Routing (DoR), XY routing, to provide routing level deadlock freedom.

232

Although not explicitly stated we assume EVC uses traditional method of separate virtual

network for each message class to provide protocol level deadlock freedom. Therefore,

EVC incurs many-times higher area and static power budget compared to unified approach

such as SEEC.

SEEC on other hand is a unified approach to provide routing and protocol level deadlock

freedom. It can work with minimal number of VCs (1 per input port) of the router. All

packets in SEEC uses full-path diversity using minimal adaptive random routing. SEEC

provides deadlock freedom by using round-robin policy both for choosing the destination

routers for ejecting FF packet and for choosing the intermediate router for upgrading a

buffered packet to FF packet.

9.10.2 SEEC compared to Token Flow Control (TFC)

TFC is a flow control to enable distributed adaptive turn model routing, such as West First

routing in the network. It is flexible compared to EVC as routers can track the congestion

at the downstream routers, in the form of buffer occupancy using tokens, up to a fixed

maximum hop distance. Tokens are generated by the source router to communicate its

buffer availability. Normal tokens used in TFC are a hint about the buffer occupancy at

next few downstream routers.

TFC provides a way to implement adaptive turn model routing, whereas SEEC provides

full path diversity (no turn restrictions) to the packets with adaptive random routing. SEEC

only tracks the number of free buffers at the next hop routers, which is naturally available

in the form of credits with credit flow control to the upstream router. SEEC uses this

information to route the packets to the uncongested path. TFC on other hand uses complex

token mechanism as a way to predict the uncongested path to adaptively route packet in

North-East or South-East direction (with limited path diversity).

Moreover, with different types of tokens and their respective max-hop tracking, there

is wiring overhead and route compute overhead in TFC which makes the router design

233

complicated compared to SEEC which is free from such complexity.

Finally, TFC is neither routing deadlock free nor protocol deadlock free. It leverages

on already deadlock free turn model routing and improves performance of the network by

providing distributive adaptive routing. The maximum hop count tracked by tokens puts

indirect restriction on the buffer depth at the input port of the router, because of buffer

turnaround time. Therefore, TFC has higher area and static power compared to SEEC,

which is free from such complicates.

SEEC follows reservation of buffer-slot and therefore guarantees the availability by the

time FF packet reaches its destination node using Free Flow control. Therefore, SEEC

is free from buffer turnaround time considerations. mSEEC provides the maximum per-

formance by allowing multiple FF packets to eject out from the network and hence is a

scalable version of SEEC.

SEEC and mSEEC are the final techniques in the class of subactive techniques of pro-

viding deadlock freedom presented in this thesis. As shown in Figure 9.20, SEEC and

mSEEC can be used to improve throughput of already deadlock free routing algorithm

(XY, West-First, etc) as FF packet can bypass congestion and reduce buffer turn around

time (Figure 9.4, Figure 9.4, and Figure 9.6). In this case SEEC/mSEEC can be modified

to create bypass paths from source-NI all the way to destination-NI. We believe this would

provide superior performance as the length of bypass path will always be maximum for a

given FF packet. We believe this to be a good follow-on work to further evaluate the lim-

iting performance of SEEC/mSEEC schemes. In next chapter we will conclude the work

presented in this thesis, we will quantitatively compare the performance of each subac-

tive technique on synthetic traffic patterns with different router configurations and finally

discusses the future directions.

234

9.11 Chapter Summary

In this chapter, we proposed a new technique called SEEC to provide deadlock freedom.

The key idea is to enable all packets to get on express paths that bypass buffering at inter-

mediate routers and zoom to the destination via a novel flow-control called Free Flow. This

provides both deadlock-freedom, as well as higher throughput (by bypassing congestion).

We also present mSEEC, a mechanism to allow multiple simultaneous free-flow packets

in the NoC with non-overlapping paths. SEEC is the first work that simultaneously pro-

vides routing and protocol level deadlock freedom without any turn restrictions, extra VCs,

deadlock-detection, or misrouting required. SEEC opens up further research directions in

deadlock-freedom, network performance and QoS.

235

CHAPTER 10

CONCLUSION

As we continue to scale more transistors within the chip, multicore designs and 2.5D/3D

based designs, interconnection network will continue to play a vital role to determine the

overall performance of the system and an area power envelope.

Deadlocks (both routing and protocol level) are a correctness issue and continue to pay

a decisive role in designing interconnection network for such heterogenous systems. This

thesis addresses this age-old problem of deadlocks in the interconnection network and does

extensive literature review in this domain. This thesis classifies the prior solutions as either

Proactive, which avoids the deadlocks or Reactive, which allows the deadlock to occur, but

then detect and recover from deadlocks.

10.1 Dissertation Summary

This thesis introduces a new class of deadlock freedom solutions, which are called as

Subactive solutions. These solutions neither avoids deadlocks nor detects deadlock, in-

stead these solutions provide periodic coordinated packet movement in the network which

flushes out any deadlock that may have occurred in the network. The thesis proposes five

subactive techniques, namely: BBR, BINDU, SWAP, DRAIN, and SEEC.

Some of the solutions provide simultaneously routing and protocol level deadlock free-

dom while others are shown to provide only routing deadlock freedom. We believe that

those solutions (BBR, and BINDU) can also be augmented to provide simultaneously rout-

ing and protocol deadlock freedom.

This thesis shows that these solutions are not only high performant, as they can bypass

congestion (for example SEEC) or better load-balance traffic but also provide notable re-

duction in area/power budget of Network-on-Chip. In particular cache coherence protocols

236

known to have 3 to 6 virtual networks can now work with only one unified virtual network.

This directly translates to 3 to 6 times static area/power reduction of the network.

Protocol deadlock freedom at lower area and power budget is particularly important

during this era of heterogeneous computing. Myriad of accelerators are now getting inte-

grated on chip and are becoming a part of coherence protocol. This has resulted in complex

cache coherence protocols which require complex transactions even more message classes.

This gets translated into a greater number of virtual networks in the on-chip network, so that

packets from one message class does not block the packets from another message class or

vice versa. A scheme that can provide protocol deadlock freedom with one unified virtual

network becomes highly desirable. Subactive schemes naturally provide protocol deadlock

freedom with one unified virtual network, highlighting its relevance in current time.

Contributions from this thesis go beyond On-Chip network and can be applied to off-

chip system level networks where link latencies are comparatively higher and some of the

prior work might not be suitable.

10.1.1 Thesis Statement

This thesis shows periodic coordinated packet movement is sufficient to resolve both routing-

level and protocol-level deadlocks in any interconnection network

Property of sub-active approach. All subactive approaches follow minimal routing and

occasionally provides coordinated forced movements to packets in the network. Since

packets follow minimal routing most of the time, subactive solutions do not impose the

high-performance overhead penalty. Moreover, these coordinated forced movement has

a dual benefit. Firstly, it naturally resolves any deadlock that may occur due to minimal

random routing at the same time enjoying full path diversity offered by the topology. Sec-

ondly, because of the nature of the forced movement of packets, a response message is never

stuck indefinitely behind a request message. In general, no two types of message-packets

are stuck indefinitely behind each other. Therefore, it provides protocol level deadlock

237

freedom as well.

10.1.2 Discussion

Here we briefly paraphrase the applicability of subactive class of techniques with respect

to on going heterogeneity of the SoC (chiplet based designs) and different irregular SoC

topologies because of this heterogeneity and dynamic/static faults as we go into sub-micron

transistor size.

Heterogeneous Systems. Designing routing algorithms for chiplet-based architectures [18]

is challenging. Multiple independently designed and verified networks must be connected

through an interposer network while maintaining deadlock freedom. Just because each

individual network is deadlock free does not guarantee that the composed network will

be deadlock free. Recent work provides deadlock freedom through turn restrictions when

entering and leaving chiplet-level networks. An alternative and potentially higher perfor-

mance solution would be to enable deadlock freedom through subactive solutions. This

would allow arbitrary vendor topologies to be connected together in a deadlock free man-

ner without requiring any costly hardware overheads.

Random Topologies. Random topologies [90, 19] offer reduced diameter and lower

average hop count making them attractive from a performance standpoint; however, high-

performance, deadlock-free routing on random topologies is challenging. For example,

Dodec [19] uses turn elimination to achieve deadlock freedom; however, given that its low

radix routers lead to fewer turn options, some routing schemes result in non-minimal paths

which can hurt performance. Maintaining all available turns would result in better per-

formance for these networks and easier design flow; to achieve high performance, Dodec

uses fully adaptive routing coupled with an escape virtual channel that uses a deadlock free

routing scheme. Similarly, Koibuchi et al. [90] use an adaptive routing algorithm combined

with up*/down* routing on the escape virtual channel for deadlock freedom. Additional

virtual channels increase the cost of interconnection networks; lower-cost solutions that

238

mitigate deadlock, such as SWAP, BBR, BINDU, DRAIN, and SEEC could be a signifi-

cant improvement.

10.2 Quantitative Comparison of Subactive Techniques

In this section we compare the subactive techniques proposed in this thesis. We used syn-

thetic traffic pattern to observe the performance of each scheme individually irrespective

of whether the scheme provides routing + protocol level deadlock freedom or only routing

level deadlock freedom.

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Bit Complement
8x8 Mesh

VC=2

BBR BINDU DRAIN SWAP SEEC mSEEC

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Shuffle
8x8 Mesh

VC=2

BBR BINDU DRAIN SWAP SEEC mSEEC

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Transpose
8x8 Mesh

VC=2

BBR BINDU DRAIN SWAP SEEC mSEEC

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Uniform Random
8x8 Mesh

VC=2

BBR BINDU DRAIN SWAP SEEC mSEEC

Figure 10.1: Quantitative Comparison of subactive techniques proposed in this thesis for
VC=2 on 8x8 Mesh.

Using synthetic traffic pattern, we could determine with given hardware resources, how

would each technique compare against each other. We also configured router with VC=2

and VC=4 and drew the latency injection rate curve as shown in Figure 10.1 and Figure 10.2

respectively. We observe the consistent behavior across different router configurations. The

key observation on relative performance of subactive techniques is in agreement with the

qualitative comparision table we drew in earlier chapter.

239

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Bit Complement
8x8 Mesh

VC=4

BBR BINDU DRAIN SWAP SEEC mSEEC

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42 0.52Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Shuffle
8x8 Mesh

VC=4

BBR BINDU DRAIN SWAP SEEC mSEEC

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42 0.52Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Transpose
8x8 Mesh

VC=4

BBR BINDU DRAIN SWAP SEEC mSEEC

5
10
15
20
25
30
35
40
45
50

0.02 0.12 0.22 0.32 0.42 0.52Av
er

ag
e

pa
ck

et
 la

te
nc

y
(c

yc
le

s)

Injection Rate (flits/node/cycle)

Uniform Random
8x8 Mesh

VC=4

BBR BINDU DRAIN SWAP SEEC mSEEC

Figure 10.2: Quantitative Comparison of subactive techniques proposed in this thesis for
VC=4 on 8x8 Mesh.

Particularly we observed, BBR to be consistently under performing among all the

schemes, this is because of higher number of bubbles present in the network, which limit

the throughput of network. Performance among BINDU, DRAIN, and SWAP is close to

each other across traffic patterns, this is because all these subactive techniques can cause

misrouting of packet. Under certain traffic patterns we observe SWAP to perform better

than DRAIN, this is because SWAP takes local decision of initiating swap. In certain con-

dition when packet at the downstream router is at its destination, or when the input port of

downstream router has free buffer available, swaping of packet is not performed. This futer

limits the mis-routing caused by SWAP. Finally, we observe SEEC performing better than

the previously proposed subactive schemes, this is because it does not misroute packet. An

important observation is that mSEEC provides significantly superior performance than all

of its sister schemes, as like SEEC it does not misroute packets, moreover, it allows mul-

tiple FF packets (bigger the network size, higher the path diversity, more FF packets) to

simultaneously zoom through the network to reach their destination.

240

10.3 Future Direction

This thesis proposed to resolve one of the fundamental challenge of deadlocks in intercon-

nection networks. Coordinated packet movement techniques introduced in this thesis frees

NoC designer from deadlock freedom considerations, and NoC designer can explore other

ways of using NoC to in tandem with other subsystems. Here we discuss some of the future

research direction where techniques proposed in this thesis can be helpful.

10.3.1 Unified Ejection Queues at End Nodes

Resolving deadlocks using some of the techniques, for example, SWAP, DRAIN and SEEC,

reduced area/power budget of NoC routers considerably. These techniques, however, still

assume dedicated injection/ejection queues for each message class at the end nodes. There

is a rich research opportunity to apply these techniques at the injection/ejection queues to

further reduce the complexity area/power budget.

10.3.2 Quality of Service

Some of the techniques proposed in this thesis can be extended to provide Quality of Service

in the network without worrying about deadlocks. This is specifically important in SoC

where heterogeneous IPs have different latency and bandwidth requirements.

10.3.3 Swap Channel

Swap Channel is a natural next step from the SWAP[11] work presented in this thesis.

Swap Channel proposes a low-cost replacement for Virtual Channel. Virtual Channel has

many favorable characteristics for example it avoids deadlocks, and ameliorate the affect

of Head-of-Line blocking in NoC. It is for this reason, Virtual Channels are also called as

Swiss knife of NoC. Appendix-A shows that swap operation can be used to ameliorate HoL

blocking effect in wormhole routers at much lower area/power overhead and at comparable

241

Hierarchical
Page Table

L1-page
table

L2-page
table

L2-page
table

L3-page
table

Network Topology

Process
-node

Figure 10.3: Co-locating Hierarchical page tables of the process closer to the node where
the process is running can enable virtual address translation during network traversal.

performance as that of virtual channel routers.

Swap Channel aims to combine two works: SWAP[11] and SwapNoC[91] to provide

light wight replacement of Virtual Channel.

10.3.4 Using NoC buffers as Victim Cache

On Chip network can experience varying degree of traffic loads. During high network-

load all the network buffers could be filled with packets from different message classes,

however during low network traffic these buffers would sit idle, contributing towards the

static leakage power of the chip as shown in Figure 3.14 depending upon cache coherence

protocol used. Instead we can use those buffers as variable size victim cache for L1 Data

and L1 instruction cache. Therefore, during low network activity, network buffers can be

used to cache useful data, which can lower the Average Memory Access Time (AMAT) 1.

Moreover, to further improve the memory system performance, network buffers can be

used to store the prefetched data, to avoid the cache pollution.

242

10.3.5 NoC design to support Virtual Memory

Virtual Memory has now become integral part of most of the general-purpose computers.

It is supported by the operating system. Dedicated hardware in the form of TLBs and

Page table walkers are provided by the hardware to improve the performance of virtual

memory subsystem. However, many features of hardware architecture are not exposed to

operating system. For example, Operating system is oblivious to the NoC topology and

micro architectural features a NoC can support.

If NoC latencies and topology are exposed to operating system, then performance can

be further improve. For example page-walk can be accelerated by caching the Page Ta-

ble Pointers of lower level page-tables closer to the router where process is running (Fig-

ure 10.3). This way by the time the original virtual address request reaches the memory

controller it would need the last Page Table Entry, of the hierarchical radix page table, for

from virtual to physical address translation.

10.4 Conclusion

The work in this thesis is properly motivated by showing that deadlocks are very rare in

practice and yet a fundamental correctness problem. Hence it must be solved for functional

correctness. This thesis also demonstrates that virtual networks are severely underutilized

yet necessary to avoid protocol level deadlocks in the network. Therefore, clearly, there is

a need to have an efficient class of solutions which resolves both protocol level and routing

level deadlock simultaneously.

To conclude, this thesis proposed a new class of deadlock freedom using the oblivi-

ous coordinated movement of packets in the network. We called it the subactive class of

solution and proposed different techniques using, Bubble, SWAP, DRAIN, and SEEC to

achieve deadlock freedom. This thesis showed that many proposed solutions resolve both

the routing level and protocol level deadlocks at the same time. They are amenable to
1Using NoC buffers as victim cache might require modifications to standard cache coherence protocol.

243

Table 10.1: Comparison of prior solutions (proactive and reactive) for routing-level
and protocol-level deadlock freedom with new subactive class of solutions. The new

subactive class of solutions are contribution of the thesis.

Types of
solutions

High
Performance

Low Area
and Power

Low Hardware
Complexity

Resolves Routing-
Level Deadlock

Resolves Protocol-
Level Deadlock

Turn Restrictions [51] Proactive ✗ ✓ ✓ ✓ ✗

Escape VCs [52] Proactive ✓ ✗ ✓ ✓ ✗

Virtual Networks [53] Proactive ✓ ✗ ✗ ✓ ✓

SPIN [41] Reactive ✓ ✓ ✗ ✓ ✗

BBR [8],
BINDU [9],
SWAP [11],
DRAIN[10],

SEEC

Subactive ✓ ✓ ✓ ✓ ✓∗

∗BBR, and BINDU are proved to provide routing deadlock freedom. However, we believe these
techniques can be extended to resolve both routing and protocol level deadlocks. Other subactive
techniques: SWAP, DRAIN, and SEEC are proved to provide both routing and protocol deadlock
freedom

static/dynamic irregular topologies which can arise either due to power gating and/or un-

reliable silicon. These characteristics of proposed set of solutions make them a lucrative

choice in the present time.

Table 10.1 qualitatively delineates the subactive class of solutions from previously pro-

posed approaches.

244

Appendices

245

APPENDIX A

LIGHTWEIGHT EMULATION OF VIRTUAL CHANNELS USING SWAPS

Virtual Channels (VCs) are a fundamental design feature across networks, both on-chip

and off-chip. They provide two key benefits - deadlock avoidance and head-of-line (HoL)

blocking mitigation. However, VCs increase the router critical path, and add significant

area and power overheads compared to simple wormhole routers. This is especially chal-

lenging in the era of energy-constrained many-core chips.

The number of VCs required for mitigating HoL depend on runtime factors such as the

distribution and size of single and multi-flit packets, and their intended destinations. In

some cases, more VCs are beneficial, while in others they may actually harm performance,

as we demonstrate. In this work, we provide a low-cost micro-architectural technique to

emulate the HoL mitigation behavior of VCs inside routers, without requiring the expensive

data path or control path (vc state and vc allocation) for VCs. We augment wormhole

routers with the ability to do an in-place swap of blocked packets to the head of the queue.

Our design (SwapNoC) can operate at low area and power specs like wormhole designs,

without incurring their HoL challenges.

A.1 Introduction

Networks-on-Chip (NoCs) are prevalent across manycore CMPs and SoCs today. NoCs

need to provide a delicate balance between meeting application’s communication latency

and throughput demands, while consuming as little real estate in terms of area and power

as possible. NoC power continues to remain a concern [92] in the many-core era.

Wormhole routers are the simplest routers and use a simple queue at every input port.

The challenge with wormhole routers, however, is head-of-line (HOL) blocking. Fig. A.1(a)

shows an example. The brown packet which wants to go east is blocked by the yellow

246

Wormhole SwapNoCVirtual Channel

Congestion CongestionCongestion

Vitrual Channel
solves “Head of
line blocking” by

providing
separate queues

Incoming
packet: Swaps
with the head of

queue

W->E

Incoming
packet: Head of

line blocking

Head of line
blocking restricts

the movement
of the flit at the

back of the queue
even if slots are

available

Incoming
Packet:
Free to
leave

towards
East

W->E

W->E

Incoming
Packet: Free

to move
leave to

East

Figure A.1: Wormhole vs. Virtual Channels vs. SwapNoC

packet that wants to go south, due to congestion at the south output port.

To avoid HOL, the standard technique is to use Virtual Channels (VCs). VCs are like

lanes on a highway, that can allow packets using different output ports to not get blocked by

each other. Fig. A.1(b) shows that VCs allow the brown packet to traverse to its destination

without getting blocked. VCs are prevalent across commercial and research NoCs [93, 94]

today1.

The challenge with VCs, however, is three-fold:

Latency. Flits need to know which VC to sit in when arriving at a router, and require a

VC allocation step [93]. More the number of VCs, the larger is the critical path for this step.

Most VC routers require at least 2-3 cycles even in the most state-of-the-art designs [93].

VCs also add significant area and power overheads.

Area and Power. Fig. A.2 plots the area and power requirements of a wormhole, Swap-

NoC (this work) and VC routers, as a function of increasing number of buffer slots. We

implemented all three designs in RTL, and the numbers are from synthesis using Nangate

15nm FreePDK [95]. We can see that the VC area and power grows to more than 2× that

of wormhole as the number of buffer slots go up. The reason is that VCs are often imple-

mented as multiple independent FIFOs, each with its associated state, and muxes to write

to and read from one of these FIFOs. Alternate organizations with trade-offs are discussed

1This work targets the performance enhancement (HoL mitigation) aspect of VCs. Some VCs would still
be required for avoiding protocol or routing deadlocks.

247

0
20000
40000
60000
80000

100000

2 4 6 8 10 12 14 16

Ar
ea
	(u
m
2)

Number	of Buffer	Slots

Area

0
20
40
60
80

2 4 6 8 10 12 14 16

Po
w
er
	(m

W
)

Number	of	Buffer	Slots

Power

0

20

40

60

80

100

2 4 6 8 10 12 14 16

Po
w
er
	(m

W
)

Number	of	Buffer	Slots

Wormhole SwapNoC VC	Router

Figure A.2: Router Area and Power as a function of buffer slots

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

Pe
ak
	T
hr
ou
gh
pu
t	

(p
ac
ke
ts
/n
od
e/
cy
cl
e)

Latency	(cycles)
0

0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25Pe
ak
	T
hr
ou
gh
pu
t	

(p
ac
ke
ts
/n
od
e/
cy
cl
e)

Latency	(cycles)

vc_deep vc_shallow wormhole

0
0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25

Pe
ak
	T
hr
ou
gh
pu
t	

(p
ac
ke
ts
/n
od
e/
cy
cle

)

Latency	(cycles)

Multi-Flit Packets
Single-Flit Packets

Figure A.3: Performance of Wormhole vs. VC-based Designs.

in Section A.2.

Traffic-dependent performance. We performed a design-space exploration by stress-

ing a NoC with myriad synthetic traffic patterns, and observed the low-load latency and

saturation throughput across wormhole and VC-based designs. For a fair comparison, we

assumed N buffer slots at each input port, which could either all go into one N-deep worm-

hole FIFO, or shallow VCs (N VCs, each 1-flit deep) or deep VCs (N/2 2-flit deep VCs,

N/4 4-flit deep VCs and so on). Fig. A.3 plots the distribution of latency and throughput

across the designs and patterns, normalized to a wormhole NoC for each traffic pattern.

We notice that single-flit packets favor shallow VC designs for throughput, while multi-flit

packets favor wormhole NoCs for throughput. Moreover, wormhole NoCs always provide

lower latency due to simpler routers.

These 3 observations should make us re-think the cost-benefit of VCs in many-core

NoCs. In this work, we propose an alternate light-weight technique to reduce HoL, without

requiring VCs. We identify that a blocked flit in a queue can in principle swap with the one

at the head of the queue. This is possible in hardware because of the cyclic shift-register

248

behavior, as Fig. A.4(b) shows. A cyclic shift-register can allow the bits at the output of

two latches to get swapped at the clock edge, without requiring another temporary latch.

This is unlike the software notion of swap where a temporary buffer is required for a swap.

Leveraging this principle, we allow HOL blocked flits that can leave the router to swap to

the head of the queue and proceed. We enhance wormhole routers with this feature and call

our design the SwapNoC. Fig. A.1(c) shows how the blocked packet can swap to the head

and can traverse to its destination without getting blocked.

SwapNoC can provide the latency, power and area benefits of wormhole NoCs, and

emulate the throughput benefits of VCs. The neat feature of our design is that it can adapt

to both single and multi-flit packets, without requiring explicit VCs partitioned into a pool

of shallow and deep queues, which can add performance loss when done at design time [96,

97] and add complexity when done dynamically at runtime.

Compared to wormhole and VC baselines, SwapNoC demonstrates up to a 3.7× re-

duction in latency, and 70%-95% improvement in throughput across synthetic and real

workloads. It has 2× lower area and 2× lower power than traditional VC based routers,

and adds less than 1% power and 8% area overhead over a wormhole router.

Sec. A.2 discusses related work. Sect. A.3 presents the microarchitecture. Sec. A.4

shows evaluations, and Sec. A.5 concludes.

A.2 Background and Related Work

A.2.1 Flow Control Techniques

To transmit messages within network, usually one of the following five flow control tech-

niques are used, with increasing order of complexity:

Circuit Switching. The whole path for the transmission is blocked until the packet is

transmitted. Since this leads to poor link bandwidth utilization, it is not preferred in NoCs.

Packet-switching with Store-and-Forward. Packet are stored completely in each

router and only allowed to leave once the entire packet has arrived.

249

Swap Swap

Incoming flit
!(Swap)

Qhead

0

1 0

1
0

1

N
E

S
W

Qtail

5
threshold (config.)

clk
Shift Register

(b)(a)

queue_occupancy
Qhead.outport

incoming_pkt.outport

Swap_
Policy Swap

5

E
N
N
W
E
N
N Qhead

Qtail N
N
N
W
E
N
E Qhead

Qtail

outports: Before Swap
wormhole

outports: After Swap
tail_swap

E
N
N
N
E
N
W Qhead

Qtail

swap_disable

threshold

outports: After Swap
intel_swap

1

2

1

W

E

swap_enable

tail_swap = (Qhead_blk) &&
 (Qhead.outport != incoming_flit.outport) &&
 (occupancy >= threshold)

intel_swap = (Qhead_blk) &&
 (occupancy >= threshold) &&
 (Qhead.outport !=scan_queue()->pkt.outport)

Figure A.4: Swap NoC Microarchitecture. For illustration purposes, we show the swap for
a single flit packet. Presented above is an example of tail swap and intel swap policies.
Suppose the North output port is blocked. tail swap enables the packet going East at Qtail

to swap with the one at Qhead going North (Step 1). With intel swap, a scan of the queue
results first in the flit at location Qhead+3 (i.e., outport West) getting swapped with Qhead

(Step 1), and subsequently, if West is also blocked, this gets swapped with the flit at Qtail

going East. intel swap enables more number of swaps.

Packet-switching with Virtual cut-through (VCT). Packets are allowed to go to the

downstream router as soon as an output channel is free. The buffer and link allocation is

still done on a packet basis.

Packet-switching with Wormhole. This is similar to VCT, as the links is still allocated

on a per packet basis. However, buffers at routers can be smaller than the size of the packet.

Thus, buffering is done on a flit basis. Therefore, this design can work on routers with fewer

buffers.

Head-of-Line Blocking. Despite obvious benefits of lesser buffering compared to other

packet-switched techniques, wormhole routing suffers from Head-of-Line (HoL) blocking.

Consider the case where a tail flit of certain packet is blocked at the head of the queue

because the requested output channel for that flit is not free due to congestion. Even if

the desired outports of the flits of the packets waiting behind the blocked flit are free,

they cannot leave. This is called Head-of-Line (HoL) blocking. As this phenomenon is

250

unpredictable, it can lead to performance degradation.

Packet-switching with Virtual Channels (VCs). VCs reduces HOL, as Fig. A.1(b)

demonstrates, by assigning separate queues for different packets. Lots of shallow VCs are

better at heavy traffic; multiple deep VCs are better when there is low traffic and each packet

has multiple flits. The VC queues are typically partitioned in a static manner during design

time. VC-based flow control is one of the most prevalent flow control techniques in use

today, and has been used across NoC prototypes [93, 94].

A.2.2 Buffer Management

In an on-chip scenario, wires are often abundant while real-estate for buffers is expensive.

There has thus been a lot of prior work that tries to optimize for efficient usage of buffers -

either for performance or for energy-efficiency.

Low-Cost Buffers. One class of solutions has focused on reducing the cost of VC

buffers. These span from using bufferless routers [42] to intelligent bypassing of router

pipeline [82, 98] to using multiple physical networks [54].

Elastic buffers [99] can also help reduce buffer area and power. These techniques are

complementary to our approach and can augment it to reduce area and power further.

Dynamic VC Partitioning. The works most related to ours fall within the category

of dynamic VC partitioning [96, 97, 100]. DAMQ [96] was one of the early works in

this space that advocated for organizing the available buffers in the form of a linked list,

allowing flits of a packet to dynamically allocate one to all of the slots at that input port.

Follow-up research has tried to efficiently utilize the buffers for higher throughput [100] by

emulating output buffered routers while operating the router at considerable frequencies.

ViChaR [97] implements a Unified Buffer Structure (UBS) at each input port, controlled

by a Unified Control Logic (UCL) structure, that dynamically maps flits to a given virtual

channel to maximize buffer utilization.

In these designs, the router controls each buffer slot individually to dynamically create

251

shallow VCs or deep VCs. The challenge is that full flexibility requires the router to pay the

control overhead of N VCs if there are N buffer slots at each input port to allow each buffer

to act as its own VC and get direct access to the switch if required. This incurs overheads

both in terms of complexity, and in terms of area and power. Our work, in contrast does

the exact opposite. Rather than using individual buffer slots to dynamically construct VCs,

we use a single FIFO and enable it to “act” like multiple VCs by swapping blocked packets

dynamically to the head of the queue.

A.3 The SwapNoC

Wormhole routers have two key bottlenecks: (1) HoL blocking at the input port, and (2)

losing arbitration for the switch output port due to flits at other input ports contending for

the same output port. VCs directly address (1) since each input port has multiple candidates

to choose from, not just one. VCs indirectly address (2) as well since VCs provide multiple

choices to the switch allocator (SA) which can then try to find the best possible match

between input requests and available output ports. However, VCs add tremendous area and

power overheads as we have motivated so far. Moreover, designing a switch allocator that

does a good matching is a NP-hard problem [24] and most hardware implementations use

a simpler separable allocator [24] which independently arbitrates for input and output ports

and cannot address (2).

We make a case for solving HoL by a much simpler solution - allow the blocked flit/-

packet to perform an in-place swap with the head of the queue. We also present policies

that help mitigate the output port arbitration challenge.

A.3.1 Microarchitecture

The fundamental rule in digital hardware design that is used extensively for building state

machines is as follows - if multiple flip flops are connected to each other in series, at the

rising edge of the clock all inputs move forward by one in parallel without clobbering the

252

old values2. For instance, in the circular shift register in Fig. A.4(b), at each clock edge, the

blue and red signals can keep swapping with each other, without requiring any additional

storage for performing the swap. Leveraging this principle, the microarchitecture of the

SwapNoC router is shown in Fig. A.4(a). In this example, we enable the incoming flit

being enqueued at the tail of the queue (Qtail) to swap with the one at Qhead. We also allow

swaps to occur from intermediate points inside the queue, as we describe later. Swaps occur

at a packet granularity (i.e., if enabled, all flits of a blocked packet get swapped to Qhead

one behind the other), as explained in Section A.3.3.

The swap control signals are setup by a swap policy controller. Different policies use

different metrics to determine whether to swap or not, which are shown as inputs to the

controller in Fig. A.4(a).

A.3.2 Swap Policies

In this work we present 5 policies for swapping. However, our proposed idea of swapping

packets is quite powerful and there can be a lot more policies. For all the policies, we

assume that the flit at Qhead is unable to leave due to zero credits at its outport. If not, a

swap will not be triggered.

Tail Swap. In tail swap we swap the head of the queue with the incoming packet if

the outport of the incoming packet (i.e., at Qtail) is different than at Qhead. We trigger

tail swap if the current queue occupancy is greater than a preset threshold value. For this

policy, we assume lookahead routing [24], i.e., the incoming packet comes with a specific

output port that was computed at the previous router. If the output port of the incoming

packet is different from that of the packet waiting at Qhead, it becomes the candidate for

swapping. The swap is initiated if the current queue occupancy is greater than or equal to

the threshold.
2Clock synthesis by CAD tools ensures this behavior for correct operation of all synchronous digital

circuits.

253

Intel Swap. In intel swap we do not restrict ourselves to swap Qhead with the incoming

(Qtail) packet; instead upon reaching the threshold intel swap proactively scans the queue

from back to front to find any packet with outport different than that of its head.

On finding the first packet during scan with different outport than head, we swap it with

Qhead.

Fig. A.4 demonstrates the tail swap and intel swap policies with an example. The

threshold parameter is only used in the tail swap and intel swap policies, not by the other

policies. The implicit difference between intel swap policy and tail swap policy is that

swapping is done more often in intel swap because after threshold is reached, there are

more candidates (packet with different outport than Qhead) to choose from as compared to

tail swap.

The cost of scanning can be reduced using a per inport structure which holds the up-

dated outport of all the packets present in the queue with their position. This structure will

get updated whenever any packet enqueues, or leaves the queue or get swapped within the

queue.

Credit Swap. credit swap is based on the insight that a flit with zero credits at its

output port could get stuck for many cycles since zero credits is a likely indication of

congestion at its downstream router. If such a flit were to move to the Qhead, it would cause

HoL for other packets. The credit swap policy is centered around finding such packets

and pushing them to the tail of the queue.

credit swap keeps track of the credit count at all the outports. Whenever any of the

outport’s credit becomes 0 (which means there is no buffer space available at the given

inport of the downstream router), it scans the inport queue starting from front till back.

During the scan, if it finds a packet with same outport as the one which has 0 credit, it

swaps it with the tail of the queue. This is done at all the inports in the router, to make sure

the outport which has no credit has its packets shifted towards the tail of the input queues.

This also helps in reducing network congestion.

254

Random Swap. random swap policy tries to shuffle all the inport queues periodi-

cally. Shuffling is done by choosing a packet from the queue randomly and swapping it

with the head of the queue. This is a heuristic, but can reduce the effect of HoL blocking

as each packet comes at the head of the queue with equal probability.

Shuffle Swap. Recall that there could be two reasons that the flit at Qhead is unable

to leave the queue, as discussed before - HoL blocking or losing SA in the router. shuf-

fle swap policy also tries to shuffle all its inport queues periodically like the random swap

policy. The only difference is that when it selects the candidate packet to swap with Qhead,

it makes sure that the selected packet does not have the same outport as the one at the head.

This make head of all inport queues randomly distributed, thus not only reducing the effect

of HoL blocking, but also helping increase the chance of winning the SA.

A.3.3 Multi-flit Packet Swaps

Full-packet Swap. Swaps nominally occur at a packet granularity (i.e., if enabled, all flits

of a blocked packet get swapped to Qhead one behind the other). During a full packet swap,

all flits of the packet can be swapped either serially (if there is only one bypass connection

to Qhead) or in parallel if there are multiple connections. All flits of a packet are swapped

in-order, so there is no re-ordering of flits within a packet.

Since our base design is a wormhole router, we do not allow partial swaps since the

body and tail flits of a packet do not carry routing information and rely on following the flit

right before it. This is because there is no “VC” to store the per-packet routing information.

All links are allocated on a packet granularity. Swaps are disallowed under 2 conditions:

(1) If the flit at the Qhead is not a head flit of a packet, then the swap is not allowed.

The reasoning is as follows: if the flit at Qhead is a body or tail flit, that means that the

head flit of this packet already left the router. This is implemented by setting a head blk

whenever a head flit reaches Qhead, and resetting it when the tail flit leaves.

(2) If the queue does not have enough slots to hold the entire incoming packet, swaps to

Qhead are not allowed since part of the packet would have been swapped to the front, while

255

the remaining would still be at the previous router waiting for credits.

Flit-level Swap. The two conditions listed above can be relaxed, i.e., partial swaps can

be allowed, if each body and tail flit also carries the output port (encoded in 3-bits) at this

router. The body and tail flits do not need to carry the full header (which would essentially

make each body and tail flit a packet in itself reducing effective bandwidth). In such a

scenario, the body and tail flits, that are no longer right behind the head flit, would know

which output port to go out from when they eventually arrive at Qhead again.

This does not break the correctness of the design, as we describe with an example.

Suppose a Packet A is waiting for the East output port and stalled. The head-flit of Packet

B going towards South gets swapped and moves to the head of the queue and leaves. Now

the East output port becomes free and flits from Packet A start getting sent out. Since the

head of the queue is no longer blocked, the other flits of Packet B get queued behind Packet

A. This is an acceptable outcome. The goal of the SwapNoC, like VCs, is to ensure that

some flit can leave from an input port and output port every cycle. While Packet A was

stuck, Packet B was allowed to swap and fulfill this requirement. Once Packet A becomes

free, it satisfies this requirement. At the next router at the East output port, all flits of Packet

A are still going to be together in the correct order.

A.3.4 Comparison to VCs.

The goal of SwapNoC is to emulate the behavior of VCs, i.e., the ability for flits to different

output ports not get blocked by each other. To that end, different policies for swaps can

emulate different behaviors. We give an intuition on how we can seamlessly model VC

behavior without any control except the notion of a threshold and the ability for an input

flit to swap with the head of the queue. How to emulate shallow VCs? If a network has

a lot of 1-flit packets, a small value of threshold can essentially emulate the behavior of

shallow VCs by allowing every new packet going to a different output port to have the

ability to bypass a blocked packet.

256

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
g	P

kt
	La

te
nc
y	(
cy
cle

s)

Packet	Injection	Rate	(packets/node/cycle)

TRANSPOSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032

Av
g	P

kt
	La

te
nc
y	(
cy
cle

s)

Packet	Injection Rate	(packets/node/cycle)

TORNADO_RANDOM_3010
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022Av
g	P

kt	
La
te
nc
y	(
cy
cle

s)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032 0.037

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

UNIFORM_RANDOM
10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_REVERSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

TORNADO

20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
.	P
kt
	La

te
nc
y	(
cy
cle

s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_COMPLEMENT

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
g.
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

10
20
30
40
50
60
70
80
90

100

0.02 0.07 0.12 0.17 0.22Av
er
ag
e	
Pa
ck
et
	L
at
en
cy
	

(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90
100

0.02 0.07 0.12 0.17 0.22Av
er
ag
e	
Pa
ck
et
	L
at
en
cy
	

(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
r
a
g
e
	P
a
c
k
e
t
	L
a
t
e
n
c
y
	

(
c
y
c
le
s
)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

(a) (b) (c)

Figure A.5: Performance of SwapNoC with multi-flit packets.

How to emulate deep VCs? If a network has a lot of multi-flit packets, then having a

threshold equal to or greater than the size of the packets can allow new packets to bypass

blocked packets.

How is the threshold set? The threshold is meant to be a dynamic knob available with

the router to tune the swap frequency for tail swap and intel swap based on traffic rate

and size of packets. In our design, we support both a static version and a dynamic version.

In the static version, the threshold is set in the router at reset, based on offline profiling of

traffic. In the dynamic version, the router monitors the number of failed switch arbitrations

and adjusts the threshold accordingly. When the number of failed arbitrations are high, the

threshold is lowered, else it is raised. We demonstrate the impact of the threshold in our

evaluations.

Adaptive Schemes. Schemes like credit swap, rand swap and shuffle swap do not

need the threshold knob to tune and aggressively try to adapt with traffic.

257

10
20
30
40
50
60
70

0.02 0.07 0.12 0.17 0.22A
vg
	P
kt
	L
at
en
cy
	

(c
yc
le
s)

Pkt	Inj	Rate	(pkts/node/cycle)

EDGE_50

10
20
30
40
50
60
70

0.02 0.12 0.22Av
er
ag
e	
Pa
ck
et
	L
at
en
cy
	

(c
yc
le
s)

Pkt	Inj	Rate	(pkts/node/cycle)

SHUFFLE

10
20
30
40
50
60
70

0 0.1 0.2 0.3

A
ve
ra
ge
	P
a
ck
e
t	
La
te
n
cy
	

(c
yc
le
s)

Pkt	Inj	Rate	(pkts/node/cycle)

BIT_ROTATION

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022
A
vg
	P
kt
	L
at
en
cy
	(
cy
cl
es
)

Packet	Injection	Rate	(packets/node/cycle)

TRANSPOSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032

A
vg
	P
kt
	L
at
en
cy
	(
cy
cl
es
)

Packet	Injection Rate	(packets/node/cycle)

TORNADO_RANDOM_3010
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022A
vg
	P
kt
	L
at
en
cy
	(
cy
cl
es
)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

A
vg
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032 0.037

A
vg
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

UNIFORM_RANDOM
10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017

A
vg
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_REVERSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027

A
vg
	P
kt
	L
a
te
n
cy
	(
cy
cl
e
s)

Packet	Injection	Rate	(packets/node/cycle)

TORNADO

20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

A
v.
	P
kt
	L
a
te
n
cy
	(
cy
cl
e
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_COMPLEMENT

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022
A
vg
.	P
kt
	L
a
te
n
cy
	(
cy
cl
e
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

10
20
30
40
50
60
70
80
90

100

0.02 0.07 0.12 0.17 0.22A
v
e
ra
g
e
	P
a
c
ke
t	
L
a
te
n
c
y
	

(c
y
c
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90
100

0.02 0.07 0.12 0.17 0.22A
v
e
ra
g
e
	P
a
c
ke
t	
L
a
te
n
c
y
	

(c
y
c
le
s)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3

A
v
e
r
a
g
e
	
P
a
c
k
e
t
	
L
a
t
e
n
c
y
	

(
c
y
c
l
e
s
)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

(a) (b) (c)

0.025
0.03

0.035
0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P
e
a
k
	T
h
ro
u
g
h
p
u
t

Threshold

depth_16 depth_12 depth_8 depth_4

(a) Performance
(b) Sweep of threshold and buffer depth for

tail_swap policy

Figure A.6: Performance of SwapNoC with single-flit packets.

Table A.1: Network Configurations (1-cycle router in each)
Wormhole Wormhole router with a N -flit deep queue.

VC-shallow N 1-flit VCs (max number of VCs).
VC-deep 2 N/2-flit deep and 4 N/4-flit-deep VCs.
SwapNoC N -flit deep queue with Swaps.

Summary. SwapNoC cannot beat VCs cycle-by-cycle in terms of throughput, since

fundamentally it operates on heuristics to get a non-blocked flit to Qhead while VCs can

essentially arbitrate for and choose the best possible candidate every cycle. But the Swap-

NoC has a lower cycle time, and much lower power and area than VC routers, as we show

next. Moreover, as we observe in our results, static partitioning of VCs actually performs

worse than SwapNoC, especially with large packet sizes.

A.4 Evaluation

A.4.1 Methodology

Our target NoCs are described in Table A.1. We equalize the total buffers (say N) in each

router across all designs. All other possible VC configurations should perform between

VC-shallow and VC-deep which represent two extremes of the design space for VCs.

All routers - wormhole, Swap and VC have a state-of-the-art 1-cycle pipeline. This is

an aggressive assumption for VC routers which typically take 2+ cycles due to input and

output VC arbitrations [93] that are not required in wormhole and SwapNoC.

We implemented all NoCs in RTL to get pipeline delay, area, and power results post-

synthesis using the 15nm Nangate FreePDK library [95]. For design-space exploration

258

inside multicores, we used the gem5 [7] simulator with the Garnet on-chip network model

where we modeled the SwapNoC. We assume a 8×8 mesh in all our evaluations.

Traffic Patterns. We evaluate our designs across a suite of synthetic and real traf-

fic patterns. We also define two new synthetic patterns to stress HoLs in the NoC. Tor-

nado Random 30 is the traditional Tornado pattern - which always sends traffic halfway

across the mesh in the same dimension without turning, with 30% of the traffic being ran-

dom, i.e., may want to turn. Edge 50 sends 50% of the traffic to the rightmost node in

the same row as the source, and 50% to a random destination. The synthetic traffic runs

are done with both single-flit and 5-flit packets, to demonstrate the impact of our NoCs.

We also run full-system simulations with PARSEC benchmarks over a MOESI directory

protocol. The protocol requires 4 virtual networks (request, response, forward, unblock)

for deadlock-avoidance. Data (cacheline) packets are 5-flit, the rest of the packets are 1-flit.

Wormhole and SwapNoC use a single FIFO within each vnet, while the VC-based designs

use 4 VCs within each vnet.

A.4.2 Critical Path, Area and Power

RTL synthesis of the SwapNoC router demonstrates that it increases the critical path over

a wormhole router by only 8.4-9.4% across queue depths from 2 to 16. This is due to the

mux that can read a flit from either the head, or the threshold size depth in the queue. This

overhead was well within the timing slack at 1ns, enabling a 1-cycle operation at 1GHz.

The VC router, on the other hand, has a critical path close to 2ns when N=16.

Fig. A.2 shows that the SwapNoC router is 2× smaller in area and consumes 2× lower

power compared to VC routers, as the number of buffer slots in each port goes up. Swap-

NoC adds 1% power and 8% area overhead over the wormhole router.3

3We thank Hyoukjun Kwon from Georgia Tech for help with RTL implementation and synthesis of the
Swap NoC

259

A.4.3 Performance: Synthetic Traffic

Multi-flit Packets. Fig. A.5 evaluates the performance of SwapNoC across synthetic traffic

patterns using 5-flit packets. With multi-flit packets, the shallow VC design has the highest

delay, due to heavy serialization. At low loads, the flit of each packet needs to wait for the

credit round trip for sending every flit of the packet. At high loads, more VCs helps push

the throughput. Thus, this design has the highest throughput across most patterns. The

deep VC design on the other hand provides much better low-load latency, and saturates

at the same or slightly lower injection rate than the shallow VC. Wormhole saturates the

earliest across all patterns, which is its key shortcoming.

The SwapNoC policies provide the best low-load latencies, providing a 61% reduc-

tion in latency compared to the shallow VC design, and 28% lower than the deep-VC

design. In terms of throughput, SwapNoC provides 88.2-87.6-88.1% better throughput

than the VC-based designs for bit reverse, transpose, and edge 50. With bit rotation,

shuffle and tornado, the throughput of SwapNoC is comparable to that of the VC-based

designs. For uniform random, bit complement, and tornado random 30 SwapNoC

provides throughput that is in between that of wormhole and VCs.

tornado is an interesting traffic pattern for the SwapNoC since traffic never turns, which

would seem to imply that there would never be any HoL blocking. However, there is still

HoL blocking for packets that want to get ejected. This is the reason SwapNoC actually

improves throughput over the wormhole design even for tornado.

Among the SwapNoC policies, random swap and intel swap have slightly better perfor-

mance than the others.

In summary, SwapNoC provides the performance of wormhole and deep VCs at low-

loads, and close to or better throughput than shallow VCs at high loads, essentially model-

ing a dynamic VC partitioning design without the overheads of managing each buffer slot

independently.

Single-flit Packets. Fig. A.6(a) demonstrates the performance of SwapNoC with single-

260

0
0.2
0.4
0.6
0.8
1

1.2
1.4

blackscholes bodytrack canneal fluidanimate swaptions

N
or
m
al
ize

d	
Ru

nt
im
e

VC-Deep VC-Shallow Wormhole Tail_Swap
Intel_Swap Credit_Swap Random_Swap Shuffle_Swap

Figure A.7: Normalized Full-System Runtime with PARSEC.

flit packets. With single-flit packets, there are no credit turnaround issues for shallow VCs

which provide the best latency and throughput. As discussed earlier in Section A.4.2, VCs

provide much better opportunities for flits going out of unblocked outports to arbitrate for

and leave, compared to the SwapNoC which relies on heuristics to come to the head of

the queue. SwapNoC provides about 15% improvement in throughput over wormhole for

edge 50 and shuffle, and comparable performance with bit rotation and other patterns

not shown in the interest of space. SwapNoC still beats the Deep-VC design in throughput

by 40-50% in edge 50 and bit rotation.

In summary, with single-flit packets, a deep-VC design suffers tremendously while a

shallow VC design performs the best. The SwapNoC is an elegant design choice for pro-

viding better throughput than deep VC designs.

Impact of buffer depth and threshold

Fig. A.6(b) plots the throughput as a function of the threshold parameter across multiple

buffer depths for the tail swap policy. For a buffer depth of 4, a threshold of 3 gives a spike

in performance. For depths of 8 and 12, the impact of threshold is almost negligible. But

with a buffer depth of 16, a threshold of 11-13 gives the best performance.

A.4.4 Performance: Full-System PARSEC

Fig. A.7 demonstrates the full-system performance with PARSEC benchmarks. For bench-

marks such as blackscholes and bodytrack, SwapNoC provides 12% lower runtime than

VCs, primarily due to the faster router. Its performance is same as that of wormhole as

261

there is not enough NoC traffic to cause much HoL blocking. This is the same reason both

deep VC and shallow VC have similar performance. With canneal and fluidanimate we

see about 5% reduction in overall runtime with shuffle swap compared to wormhole. But

in some cases, tail swap actually results in a drop in performance. swaptions shows the

most dynamic behavior, demonstrating up to 36% reduction in runtime over both VCs and

wormhole with credit swap and random swap.

In summary, for applications with low network traffic, which is often the case with

real workloads, the overheads of VCs is an overkill for many-core systems. SwapNoC has

similar overheads as a wormhole router, but can step in to provide higher performance

than the wormhole in case of higher traffic, making it a win-win.

A.5 Conclusions

We provide a light-weight technique to mitigate HoL without requiring VCs. Our key nov-

elty is the ability for blocked flits to swap with the head of the queue in a wormhole router,

without any additional buffers to manage this swap. We add minimal control overhead to

perform this swap, and also describe multiple heuristic policies for managing when swaps

occur. The SwapNoC shows significant performance, energy, and area benefits over VC-

based router designs. We believe that the idea of leveraging swaps goes beyond the policies

presented in this paper, and can open up a suite of optimizations for NoC architects and de-

signers.

262

REFERENCES

[1] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R. LeBlanc,
“Design of ion-implanted mosfet’s with very small physical dimensions,” IEEE
Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268, 1974.

[2] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: A 32-way multithreaded
sparc processor,” IEEE micro, vol. 25, no. 2, pp. 21–29, 2005.

[3] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy,
“Introduction to the cell multiprocessor,” IBM journal of Research and Develop-
ment, vol. 49, no. 4.5, pp. 589–604, 2005.

[4] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
L. Bao, J. Brown, et al., “Tile64-processor: A 64-core soc with mesh interconnect,”
in 2008 IEEE International Solid-State Circuits Conference-Digest of Technical
Papers, IEEE, 2008, pp. 88–598.

[5] T. Krishna, “Enabling dedicated single-cycle connections over a shared network-
on-chip,” PhD thesis, Massachusetts Institute of Technology, 2014.

[6] The dining philosophers problem. https://en.wikipedia.org/wiki/
Dining_philosophers_problem.

[7] N. Binkert et al., “The gem5 simulator,” SIGARCH Comput. Archit. News, vol. 39,
no. 2, pp. 1–7, Aug. 2011.

[8] M. Parasar et al., “Brownian bubble router: Enabling deadlock freedom via guar-
anteed forward progress,” in International Symposium on Networks on Chip, 2018.

[9] M. Parasar and T. Krishna, “Bindu: Deadlock-freedom with one bubble in the net-
work,” in International Symposium on Networks on Chip, 2019.

[10] M. Parasar, H. Farrokhbakht, N. E. Jerger, P. V. Gratz, T. Krishna, and J. San
Miguel, “Drain: Deadlock removal for arbitrary irregular networks,” in 2020 IEEE
International Symposium on High Performance Computer Architecture (HPCA),
IEEE, 2020, pp. 447–460.

[11] M. Parasar et al., “Synchronized weaving of adjacent packets (swap) for network
deadlock prevention,” in MICRO, 2019.

263

[12] D. K. Schroder and J. A. Babcock, “Negative bias temperature instability: Road to
cross in deep submicron silicon semiconductor manufacturing,” Journal of applied
Physics, vol. 94, no. 1, pp. 1–18, 2003.

[13] J. McPherson and H. Mogul, “Underlying physics of the thermochemical e model
in describing low-field time-dependent dielectric breakdown in sio 2 thin films,”
Journal of Applied Physics, vol. 84, no. 3, pp. 1513–1523, 1998.

[14] E Takeda and N Suzuki, “An empirical model for device degradation due to hot-
carrier injection,” IEEE electron device letters, vol. 4, no. 4, pp. 111–113, 1983.

[15] J. R. Black, “Electromigration: A brief survey and some recent results,” IEEE
Transactions on Electron Devices, vol. 16, no. 4, pp. 338–347, 1969.

[16] I. T. R. for Semiconductors (ITRS), More moore, 2014.

[17] U. R. Karpuzcu et al., “The bubblewrap many-core: Popping cores for sequential
acceleration,” in Proceedings of the 42nd Annual IEEE/ACM International Sympo-
sium on Microarchitecture, ACM, 2009, pp. 447–458.

[18] J. Yin et al., “Modular routing design for chiplet-based systems,” in Proceedings of
the International Symposium on Computer Architecture, 2018.

[19] H. Yang et al., “Dodec: Random-link, low-radix on-chip networks,” in Proceedings
of the International Symposium on Microarchitecture, 2014.

[20] D. Fick et al., “Vicis: A reliable network for unreliable silicon,” in Proceedings of
the 46th Annual Design Automation Conference, ACM, 2009, pp. 812–817.

[21] C. Iordanou et al., “Hermes: Architecting a top-performing fault-tolerant routing
algorithm for networks-on-chips,” in Computer Design (ICCD), 2014 32nd IEEE
International Conference on, IEEE, 2014, pp. 424–431.

[22] A. DeOrio et al., “A reliable routing architecture and algorithm for nocs,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 31,
no. 5, pp. 726–739, 2012.

[23] K. Bhardwaj et al., “Towards graceful aging degradation in nocs through an adap-
tive routing algorithm,” in Proceedings of the 49th Annual Design Automation Con-
ference, ACM, 2012, pp. 382–391.

[24] N. E. Jerger, T. Krishna, and L.-S. Peh, On-chip Networks. Morgan & Claypool
Publishers, 2017.

264

[25] M. D. Schroeder et al., “Autonet: A high-speed, self-configuring local area network
using point-to-point links,” J-SAC, vol. 9, no. 8, 1991.

[26] W. J. Dally and B. Towles, “Route packets, not wires: On-chip interconnection
networks,” in DAC, 2001.

[27] M. Galles, “Scalable pipelined interconnect for distributed endpoint routing: The
sgi spider chip,” in Proceedings of the International Symposium on High-Performance
Interconnects (HOTI’96), 1996, pp. 141–146.

[28] L.-S. Peh and W. J. Dally, “A delay model and speculative architecture for pipelined
routers,” in Proceedings HPCA Seventh International Symposium on High-Performance
Computer Architecture, IEEE, 2001, pp. 255–266.

[29] A. Kumar, P. Kundu, A. P. Singh, L.-S. Peh, and N. K. Jha, “A 4.6 tbits/s 3.6 ghz
single-cycle noc router with a novel switch allocator in 65nm cmos.,” in ICCD,
Citeseer, vol. 7, 2007, pp. 63–70.

[30] P. Sweazey and A. J. Smith, “A class of compatible cache consistency protocols
and their support by the ieee futurebus,” ACM SIGARCH Computer Architecture
News, vol. 14, no. 2, pp. 414–423, 1986.

[31] A. GEGO, Study and performance analysis of cache-coherence protocols in shared-
memory multiprocessors. https://dial.uclouvain.be/memoire/ucl/
en/object/thesis:6679/datastream/PDF_01/view.

[32] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The splash-2 programs:
Characterization and methodological considerations,” in Proceedings 22nd Annual
International Symposium on Computer Architecture, 1995, pp. 24–36.

[33] C. Bienia et al., “The parsec benchmark suite: Characterization and architectural
implications,” in Proceedings of the 17th International Conference on Parallel Ar-
chitectures and Compilation Techniques, ser. International Conference on Parallel
Architectures and Compilation Techniques (PACT) ’08, Toronto, Ontario, Canada:
ACM, 2008, pp. 72–81, ISBN: 978-1-60558-282-5.

[34] W. J. Dally and C. L. Seitz, “Deadlock-free message routing in multiprocessor
interconnection networks,” IEEE Trans. Comput., vol. 36, no. 5, pp. 547–553, May
1987.

[35] A. Singh, “Load-balanced routing in interconnection networks,” PhD thesis, Stan-
ford University, 2005.

[36] C. L. Seitz, W. C. Athas, C. M. Flaig, A. J. Martin, J. Seizovic, C. S. Steele, and
W.-K. Su, “The architecture and programming of the ametek series 2010 multicom-

265

puter,” in Proceedings of the Third Conference on Hypercube Concurrent Com-
puters and Applications: Architecture, Software, Computer Systems, and General
Issues - Volume 1, ser. C3P, Pasadena, California, USA: ACM, 1988, pp. 33–37,
ISBN: 0-89791-278-0.

[37] C. Carrion et al., “A flow control mechanism to avoid message deadlock in k-ary
n-cube networks,” in Proceedings of the Fourth International Conference on High-
Performance Computing, 1997.

[38] A. Ramrakhyani and T. Krishna, “Static bubble: A framework for deadlock-free
irregular on-chip topologies,” in IEEE International Symposium on High Perfor-
mance Computer Architecture (HPCA), 2017, pp. 253–264.

[39] C. Lizhong et al., “Critical bubble scheme: An efficient implementation of globally
aware network flow control,” in 25th IEEEIPDPS, 2011, pp. 592–603.

[40] L. Chen and T. M. Pinkston, “Worm-bubble flow control,” in Proceedings of the
19th IEEE International Symposium on High Performance Computer Architecture
(HPCA), 2013, pp. 366–377, ISBN: 978-1-4673-5585-8.

[41] A. Ramrakhyani et al., “Synchronized progress in interconnection networks (SPIN)
: A new theory for deadlock freedom,” in ISCA, 2018.

[42] T. Moscibroda and O. Mutlu, “A case for bufferless routing in on-chip networks,”
in Proceedings of the 36th Annual International Symposium on Computer Archi-
tecture, ser. ISCA ’09, Austin, TX, USA: ACM, 2009, pp. 196–207, ISBN: 978-1-
60558-526-0.

[43] P. Baran, “On distributed communications networks,” IEEE transactions on Com-
munications Systems, vol. 12, no. 1, pp. 1–9, 1964.

[44] C. Fallin et al., “MinBD: Minimally-buffered deflection routing for energy-efficient
interconnect,” in 2012 Sixth IEEE/ACM International Symposium on Networks-on-
Chip (NOCS), 2012.

[45] C. Fallin et al., “Chipper: A low-complexity bufferless deflection router,” in Pro-
ceedings of the 2011 IEEE 17th International Symposium on High Performance
Computer Architecture, ser. HPCA ’11, Washington, DC, USA: IEEE Computer
Society, 2011.

[46] D. H. Linder and J. C. Harden, “An adaptive and fault tolerant wormhole routing
strategy for k-ary n-cubes,” IEEE Trans. Comput., vol. 40, no. 1, pp. 2–12, Jan.
1991.

266

[47] K. V. Anjan and T. M. Pinkston, “An efficient, fully adaptive deadlock recovery
scheme: DISHA,” in Proceedings of the 22nd Annual International Symposium on
Computer Architecture, 1995, pp. 201–210.

[48] P. Lopez et al., “A very efficient distributed deadlock detection mechanism for
wormhole networks,” in Proceedings of the Fourth International Symposium on
High-Performance Computer Architecture, 1998, pp. 57–66.

[49] Y. Ho Song and T. M. Pinkston, “A progressive approach to handling message-
dependent deadlock in parallel computer systems,” IEEE TPDS, vol. 14, no. 3,
Mar. 2003.

[50] R. Wang et al., “Bubble coloring: Avoiding routing- and protocol-induced dead-
locks with minimal virtual channel requirement,” in ICS ’13, 2013.

[51] W. J. Dally and B. P. Towles, Principles and practices of interconnection networks.
Elsevier, 2004.

[52] J. Duato, “A new theory of deadlock-free adaptive routing in wormhole networks,”
IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 12, pp. 1320–1331, Dec. 1993.

[53] S. S. Mukherjee et al., “The alpha 21364 network architecture,” IEEE Micro, vol. 22,
no. 1, pp. 26–35, 2002.

[54] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection architecture
of the tile processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep. 2007.

[55] D. Ziakas, A. Baum, R. A. Maddox, and R. J. Safranek, “Intel® quickpath inter-
connect architectural features supporting scalable system architectures,” in 2010
18th IEEE Symposium on High Performance Interconnects, IEEE, 2010, pp. 1–6.

[56] J. Duato, “Hypertransport; technology tutorial,” in 2009 IEEE Hot Chips 21 Sym-
posium (HCS), IEEE, 2009, pp. 1–53.

[57] B. A. Hechtman and D. J. Sorin, “Evaluating cache coherent shared virtual mem-
ory for heterogeneous multicore chips,” in 2013 IEEE International Symposium on
Performance Analysis of Systems and Software (ISPASS), IEEE, 2013, pp. 118–
119.

[58] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill, S. K. Rein-
hardt, and D. A. Wood, “Heterogeneous system coherence for integrated cpu-gpu
systems,” in 2013 46th Annual IEEE/ACM International Symposium on Microar-
chitecture (MICRO), IEEE, 2013, pp. 457–467.

267

[59] N. Agarwal et al., “GARNET: A detailed on-chip network model inside a full-
system simulator,” in ISPASS, 2009, pp. 33–42.

[60] “Garnet synthetic traffic,” gem5.org.

[61] Https://www.youtube.com/watch?v=wugwx0nc4ny.

[62] E. Nuutila and E. Soisalon-Soininen, “On finding the strongly connected compo-
nents in a directed graph,” Information Processing Letters, vol. 49, no. 1, pp. 9–14,
1994.

[63] I. S. Duff and J. K. Reid, “An implementation of tarjan’s algorithm for the block tri-
angularization of a matrix,” ACM Transactions on Mathematical Software (TOMS),
vol. 4, no. 2, pp. 137–147, 1978.

[64] A. Ahmed et al., “AMD Opteron shared memory MP systems,” in 14th Hot Chips
Symposium, 2002.

[65] T. M. Pinkston, “Flexible and efficient routing based on progressive deadlock re-
covery,” IEEE Transactions on Computers, vol. 48, no. 7, pp. 649–669, 1999.

[66] H. Kwon and T. Krishna, “OpenSMART: Single-cycle multi-hop NoC generator in
BSV and Chisel,” in Proc of the IEEE International Symposium on Performance
Analysis of Systems and Software, 2017.

[67] C. Jackson and S. J. Hollis, “Skip-links: A dynamically reconfiguring topology for
energy-efficient nocs,” in SoC, 2010, pp. 49–54.

[68] J. Hu and R. Marculescu, “Dyad: Smart routing for networks-on-chip,” in DAC,
2004, pp. 260–263.

[69] A. Konstantinos et al., “ARIADNE: agnostic reconfiguration in a disconnected net-
work environment,” in PACT, 2011.

[70] R. Parikh and V. Bertacco, “Udirec: Unified diagnosis and reconfiguration for fru-
gal bypass of noc faults,” in MICRO, 2013.

[71] V. Puente et al., “Immunet: A cheap and robust fault-tolerant packet routing mech-
anism,” in ISCA, 2004.

[72] R. Parikh et al., “Power-aware NoCs through routing and topology reconfigura-
tion,” in Design Automation Conference (DAC), 2014.

[73] C. Sun, C.-H. O. Chen, G. Kurian, L. Wei, J. Miller, A. Agarwal, L.-S. Peh, and
V. Stojanovic, “Dsent-a tool connecting emerging photonics with electronics for

268

opto-electronic networks-on-chip modeling,” in 2012 IEEE/ACM Sixth Interna-
tional Symposium on Networks-on-Chip, IEEE, 2012, pp. 201–210.

[74] J. Duato, “A necessary and sufficient condition for deadlock-free adaptive rout-
ing in wormhole networks,” IEEE Trans. Parallel Distrib. Syst., vol. 6, no. 10,
pp. 1055–1067, Oct. 1995.

[75] J. Shun and G. E. Blelloch, “Ligra: A lightweight graph processing framework for
shared memory,” SIGPLAN Not., vol. 48, no. 8, pp. 135–146, 2013.

[76] K. A. Hawick and H. A. James, “Enumerating Circuits and Loops in Graphs with
Self-Arcs and Multiple-Arcs,” Massey University, Computational Science Techni-
cal Note CSTN-013, 2008.

[77] L.-S. Peh and W. J. Dally, “Flit-reservation flow control,” in Proceedings of the
IEEE International Symposium on High-Performance Computer Architecture, 2000,
pp. 73–84.

[78] D. Lee et al., “Brisk and limited-impact noc routing reconfiguration,” in DATE,
2014.

[79] N. Enright Jerger, L.-S. Peh, and M. Lipasti, “Circuit-switched coherence,” in In-
ternational Symposium on Networks-on-Chip, 2008.

[80] P. Wolkotte, G. Smit, G. Rauwerda, and L. Smit, “An energy efficient reconfig-
urable circuit-switched network-on-chip,” in International Parallel and Distributed
Processing Symposium, 2005.

[81] J. Duato, P. Lopez, F. Silla, and S. Yalamanchili, “A high-performance router ar-
chitecture for interconnection networks,” in International Conference on Parallel
Processing, 1996.

[82] A. Kumar, L.-S. Peh, P. Kundu, and N. K. Jha, “Express virtual channels: Towards
the ideal interconnection fabric,” in ACM SIGARCH Computer Architecture News,
ACM, vol. 35, 2007, pp. 150–161.

[83] A. Kumar, L.-S. Peh, and N. K. Jha, “Token flow control,” in Proceedings of
the 41st annual IEEE/ACM International Symposium on Microarchitecture, IEEE
Computer Society, 2008, pp. 342–353.

[84] T. M. Pinkston and S. Warnakulasuriya, “On deadlocks in interconnection net-
works,” in Proceedings of the 24th Annual International Symposium on Computer
Architecture, 1997, pp. 38–49.

269

[85] W. J. Dally and H. Aoki, “Deadlock-free adaptive routing in multicomputer net-
works using virtual channels,” IEEE Trans. Parallel Distrib. Syst., vol. 4, no. 4,
pp. 466–475, Apr. 1993.

[86] C. Xiao et al., “Dimensional bubble flow control and fully adaptive routing in the
2-d mesh network on chip,” in 2008 IEEE/IPIP International Conference on Em-
bedded and Ubiquitous Computing (EUC, 2008, pp. 353–358.

[87] M. Garcia et al., “On-the-fly adaptive routing in high-radix hierarchical networks,”
in Proceedings of the 41st International Conference on Parallel Processing, 2012.

[88] Https://github.com/georgia-tech-synergy-lab/gem5 drain.

[89] V. Nagarajan, D. J. Sorin, M. D. Hill, and D. A. Wood, “A primer on memory
consistency and cache coherence,” Synthesis Lectures on Computer Architecture,
vol. 15, no. 1, pp. 1–294, 2020.

[90] M. Koibuchi et al., “A case for random shortcut topologies for hpc interconnects,”
in Proceedings of the International Symposium on Computer Architecture, 2012.

[91] M. Parasar and T. Krishna, “Lightweight emulation of virtual channels using swaps,”
in Proceedings of the 10th International Workshop on Network on Chip Architec-
tures, ser. NoCArc’17, Cambridge, MA, USA: ACM, 2017, 1:1–1:6, ISBN: 978-1-
4503-5542-1.

[92] A. Samih et al., “Energy-efficient interconnect via router parking,” in HPCA, 2013.

[93] C. Clauss et al., “Evaluation and improvements of programming models for the
intel scc many-core processor,” in HPCS, 2011.

[94] B. Daya et al., “Scorpio: A 36-core research chip demonstrating snoopy coherence
on a scalable mesh noc with in-network ordering,” in ISCA, 2014.

[95] M. Martins et al., “Open cell library in 15nm freepdk technology,” in ISPD, ACM,
2015, pp. 171–178.

[96] Y. Tamir and G. L. Frazier, High-performance multi-queue buffers for VLSI com-
munications switches. IEEE Computer Society Press, 1988.

[97] C. A. Nicopoulos et al., “ViChaR: A dynamic virtual channel regulator for network-
on-chip routers,” in Proceedings of the 39th Annual IEEE/ACM International Sym-
posium on Microarchitecture, 2006, pp. 333–346, ISBN: 0-7695-2732-9.

270

[98] A. Psarras et al., “Shortpath: A network-on-chip router with fine-grained pipeline
bypassing,” IEEE Transactions on Computers, vol. 65, no. 10, pp. 3136–3147,
2016.

[99] I. Seitanidis et al., “Elastistore: Flexible elastic buffering for virtual-channel-based
networks on chip,” TVLSI, vol. 23, no. 12, pp. 3015–3028, 2015.

[100] R. Ramanujam et al., “Design of a high-throughput distributed shared-buffer noc
router,” in NOCS, 2010.

271

VITA

Mayank Parasar received B.Tech degree in Instrumentation Engineering (Electrical En-

gineering department) from the Indian Institute of Technology (IIT) Kharagpur, West Ben-

gal, India, in 2013 and an M.S. degree in Electrical and Computer Engineering (ECE) from

Georgia Institute of Technology in 2017. Between 2013 and 2015, he worked in the CPU

architecture validation group at Nvidia, Bangalore, India as an engineer. He is currently

a Ph.D. candidate in the School of Electrical and Computer Engineering at Georgia Insti-

tute of Technology, Atlanta, Georgia, working on new efficient solutions to provide routing

level and protocol level deadlock freedom in interconnection networks. His interests span

the area of virtual memory management and support in computer architecture, network on

chip, accelerator architecture, hardware/software, and hardware/algorithm co-design. He

held the position of AMD Student Ambassador at Georgia Tech in the year 2018-19. He

received the Otto & Jenny Krauss Fellow award in the year 2015-16.

272

