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Abstract—Deadlocks are a bane for network designers, be
it a Network on Chip (NoC) in a multi-core or a large scale
HPC/datacenter network. A routing deadlock occurs when there
is a cyclic dependence between the buffers of network routers.
Most modern systems avoid deadlocks by placing routing re-
strictions or adding extra virtual channels, in turn hurting
performance and adding overhead respectively.

In this work, we demonstrate that instead of placing such re-
strictions, we can, in fact, design routers to themselves guarantee
deadlock-freedom, by (i) ensuring that every router always has at
least one bubble (i.e., free buffer slot) at any input port, and (ii)
this bubble pro-actively moves between input ports. We call this
a Brownian Bubble Router (BBR). A BBR guarantees forward
progress in any network topology, without requiring any routing
restrictions or additional virtual channels.

With our BBR design we provide 4× better throughput
over state of art deadlock recovery schemes and 40% better
throughput over traditional deadlock avoidance schemes in a
8x8 Mesh at negligible area and power overheads.

Index Terms—Computer architecture, Network-on-chip, Inter-
connection network, Deadlock

I. INTRODUCTION

In interconnection networks, a deadlock is defined as a
cyclic dependence between router buffers that renders forward
progress impossible, since every upstream packet in the cycle
waits indefinitely for the downstream packet to leave. Fig. 1(I)
shows an example. Network designers put a lot of effort in
making sure that the network is guaranteed to be deadlock
free. This is because deadlock freedom is a correctness issue
rather than a performance problem. Naturally, networks need
to be formally proven to be deadlock free [1], [2] for any
traffic flow, as one may not know, in general, what kind of
traffic/runtime condition the network would be subjected to
when deployed. In addition to dynamic traffic conditions, there
could also be runtime changes in the network topology due to
faults, or power gating of network components. This makes
the problem of deadlocks even more challenging [3], [4], [5].

Almost all modern networks use one of the following two
techniques to avoid deadlocks - turn model or vc-partitioning.
A turn model leverages Dally’s theory [1] to ensure that a cyclic
dependence will never get created for any traffic pattern, by
restricting certain turns from never being taken. This guarantees
deadlock-freedom, but comes at the cost of reduced path
diversity. VC-partitioning based solutions leverage Duato’s
theory [2] and ensure that there is at least one escape VC
that maintains turn restrictions (and is thus guaranteed to be
deadlock-free via Dally’s theory [1]) while the remaining VCs
can allow any turn. This guarantees deadlock-freedom, but
comes at the cost of more resources (VCs) within each router.

For example, an escape-VC based solution requires at least
two VCs in a mesh, and at least three in a dragon-fly [6]1.

Bubble Flow Control (BFC) [7], [8], [9] is another technique
for deadlock avoidance that works on the principle that ensuring
the presence of one bubble within a ring via controlled injection
can guarantee forward progress. Unfortunately, it only works
in ring (and by extension Torus) topologies.

There has been another class of solutions arguing for
deadlock detection and recovery, since deadlocks are quite
rare [10], [11], [12]. However this does not come for free, and
requires expensive circuitry and overhead to detect deadlocks
and extra buffers added at design-time to be used for the
recovery process [10], [11], [12].

In this work we make a case for a new perspective for
guaranteeing deadlock freedom. Instead of avoiding deadlocks
or recovering from them, we show that we can allow cyclic
dependences and deadlocks to form, but ensure that they never
persist by guaranteeing forward progress through every router.
We define forward progress as a requirement for every packet
to eventually leave the current (upstream), router and move to
its downstream router. This begets a key question: How can a
router ensure forward progress when that depends on the state
of the network at the downstream routers (and may in fact cycle
back on to the upstream router in case of a deadlock). We show
that this can be ensured if we guarantee the following invariant:
for every buffered packet, there will eventually appear at least
one free buffer (i.e., bubble) at the desired input port of its
downstream router. Theoretically, this is sufficient to guarantee
deadlock-freedom, since the packet can keep moving forward.

To guarantee this invariant, we introduce the novel idea of
a brownian bubble (BB), which is a bubble that keeps moving
through the input ports of the router at a certain frequency.
The bubble is not an additional buffer - instead one of the
empty VCs (say VCi) at one of the input ports (say port pa)
of the router acts as a BB at a certain time. Bubble movement
essentially means moving a packet from a full VC (say VC j
at port pb) to the empty VCi within the router. From this point
on, VC j at port pb is now the BB.

BBR works with arbitrary topologies and routing algorithms,
requires no turn-restrictions, or additional VCs. It can enable
fully-adaptive routing with just 1 VC, unlike current solutions.
We observe 1.4-4 × higher throughput on average across traffic
patterns on a 64-core mesh compared to the state-of-the-art
deadlock avoidance and recovery schemes respectively.

1Here we are talking about the minimum number of VCs required purely
for the sake of avoiding routing deadlocks. A network will use more VCs to
avoid protocol-level deadlocks or to avoid head-of-line blocking
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Fig. 1: Walkthrough [Left to Right] shows how brownian bubble movement helps in breaking deadlock cycles. It allows a deadlocked packet
to move to some other port in its router, and other packets, not part of the deadlock ring, to acquire its place and eventually leave the router,
thus breaking the deadlock ring. In this example, it takes two bubble movements to break the deadlock.

II. BACKGROUND AND RELATED WORK

A rich body of work has been explored in NoCs to provide
deadlock-freedom. We classify these into three broad categories:
Deadlock avoidance, Deadlock detection and recovery and
Deflection and briefly discuss prominent techniques in each.

A. Deadlock Avoidance

1) Turn Model: Routing algorithms are designed such that
there are no cycles in the extended Channel Dependency Graph
(CDG). Example of such routing algorithms are dimension-
ordered XY routing, West-First routing [13], in a Mesh and
Up-Down [14] routing in irregular topologies. These routing
algorithms work by restricting certain turns that a packet can
take, thus effectively restricting the formation of deadlock cycle.
The main shortcoming of the Turn model routing is that the
path diversity is not fully utilized. Moreover, in case of dynamic
faults in the network, this technique can still deadlock [3], [11].

2) Virtual Channel (VC) Partitioning: VC partitioning
overcomes the shortcomings of the turn model by adding virtual
channels (VCs) and ensuring that there is no cyclic dependence
between the VCs. Packets need to change VCs on every turn,
or on some turns. Each VC by itself implements a turn-model,
and is thus deadlock-free. Examples of this implementation
include O1TURN [15] in a mesh and UGAL [16] in dragon
fly. A more optimized version of this design is an escape VC
(eVC) based design that allows all turns to be taken by all VCs
except one - the Escape VC, which implements a turn-model.
VC partitioning techniques allow better link utilization since
together all VCs do allow all links to be used. However, they
introduce area overhead as now we need at least 2 (or more)
VCs per input port in the network.

3) Flow-Control-based Schemes: Bubble Flow Control [7]
is used in rings and provides deadlock avoidance is by runtime
injection restrictions. There is no turn restriction imposed on the
path taken by the packet, so the CDG may be cyclic. However,
injection into the ring is restricted such that there is at least
one bubble in every router [7], [9] or in the ring [8]. BFC can
also be extended to a torus by viewing a turn (say X to Y) as
an injection into the Y ring [9]. Unfortunately BFC only works

in rings. Extending the idea of injection restriction to arbitrary
topologies would require prior knowledge of the traffic flow,
and is thus not general-purpose. Adaptive flit dropping [17]
allows flits to be dropped if they fail to traverse a switch beyond
a threshold number of times, which frees up buffers, thereby
providing deadlock-freedom (and reducing congestion).

BBR leverages the same principle as BFC in terms of
requiring a bubble to ensure forward progress, However, in
BFC [7] and its variants [9], [8], the bubble moves only when
a packet moves from one router to the other, while in BBR, our
brownian bubble pro-actively moves through different ports of
the router which allows us to dynamically introduce bubbles
in deadlocked rings. BBR thus works with arbitrary topologies
and does not require any injection restriction.

4) Spanning Trees: In irregular network topologies - ei-
ther by design or due to faults or power-gated components,
deadlocks are avoided by constructing spanning trees over
the topology [3], [18], [19], [20]. These techniques ensure
deadlock-freedom by routing packets via the root thereby
avoiding cyclic paths, but leads to non-minimal paths between
certain source-destination pairs, and also introduces additional
complexity for spanning tree construction [3], [18], [19], [20].

B. Deadlock Recovery

Deadlock recovery proposes to detect the deadlock during
runtime and recover from it [21], [11], [12]. The rationale is
that deadlocks are often quite rare - therefore turn-model re-
strictions or VC over-provisioning done by avoidance schemes
is an overkill. However, because of complicated logic for
tracking dependence cycles in the network and then providing
guaranteed mechanism of recovering from it, none of these
scheme have made it to commercial designs.

C. Deflection

Deflection-based networks misroute packets whenever there
is contention [22], [23], [24]. Since a packet never stalls,
these are naturally deadlock-free. However, mis-routing creates
congestion in the network [22], [23], and higher energy
consumption in the links due to non-minimal routes.



Fig. 2: Bubble-Exchange: Deadlock corner cases can still occur with
simple bubble movement technique (§III-A1). In each column, the
first row shows the deadlock ring with involves 2, 3 and 4 routers
respectively; the second row shows the bubble-exchange state in action,
and third row finally shows the routers state after deadlock is broken.

III. BROWNIAN BUBBLE ROUTER

Brownian Bubble Router proposes to instrument routers
with the ability of moving a bubble across the input ports
of the router. A bubble refers to an empty packet-sized
input VC in a virtual cut through router. This provides an
opportunity to a packet that is currently part of a deadlock
cycle, to move into an empty VC in the router, potentially
breaking the deadlock cycle. We have assumed each VC to be
as deep as 1-packet in this work. See §III-B for extensions.

At the beginning of the network run, one of the VCs (VC-0
for simplicity) at one of the input ports (excluding the injection
port) of each router is tagged as the “brownian bubble (BB)”.
The invariant of BBR is that, there will always be one BB
present per router. To maintain this invariant, no packet from
any other router is allowed to enter the BB. Otherwise the
bubble might get consumed while the deadlock continues. At
a certain user-specified frequency, the BB is moved across
input ports. Moving the bubble essentially means tagging some
target VC at some other input port as the BB. If the target VC
is non-empty, all flits of its packet are explicitly moved into
the original bubble - for e.g., for a 5-flit packet, this step takes
5 cycles. If the target VC is empty, some additional credit
signals are required, as we discuss later in §III-B2.

The frequency of bubble movement (BM) is based on an
epoch counter. We use BBR-k to refer to a BM every k cycles,
where k is user-specified. The target VC that the bubble is
moved into is also a design choice. For the purpose of simplicity,
in our implementation the target VC is randomly selected by
an arbiter with higher priority being given to empty over non-
empty VCs, to avoid explicit packet moves.

A. Key Concept
1) Walk-through Example of Bubble Movement: Fig. 1

illustrates functioning of of BBR in detail. As shown in Fig. 1(I),
packets present in the South, West, North and East input ports
of router 1, 2, 3 and 4 respectively are currently in a deadlock.
The direction (N/S/E/W) written on the packets is the direction
in which the packet is destined to go, in order to reach to its
destination. The empty VC at the West input port is tagged as
a “bubble”. For the purposes of this example, consider only
Router 3 (R3). In Fig. 1(II), the packet at the North input
port of R3 is moved into the bubble - thus the packet now
sits in the West input port, while the VC at the North input
port is now free (and tagged as the BB). As explained earlier,
to maintain the invariant of keeping one BB per router, no
external packet (from another router) is allowed to enter the
BB. Thus even though there is a free VC in the deadlocked
loop, the deadlock persists. Next, in Fig. 1(III), the bubble
moves to the East input port, and the packet sitting there comes
to the North input port.‘ This packet wanted to go North (to
router 2) which is unblocked (since Router 2’s South input
port is free), and will thus leave the router. This is shown in
Fig. 1(IV). At this point, it will free the VC at the North input
port, into which the packet sitting in Router 2’s West input
port can move, leading to forward progress. Fig. 1(IV) shows
the final state of the network, where the four packets originally
part of the deadlock ring have made forward progress and now
there is no deadlock. Note that the direction initial written on
the packets still represents the direction in which the packet
needs to move in order to reach to its destination.

2) Proof of Deadlock Freedom: Suppose there are one or
more deadlocked rings going through a router.

Definition: Unblocked Packet. A packet that will eventually
leave the router because of a free credit at its downstream router.

Theorem: As long as a router has (a) at least one empty
input VC (not the BB) or (b) at least one unblocked packet,
BBR breaks any cyclic dependence going through this router.

Proof: Bubble movement can move one of the deadlocked
packets into the empty VC (in case (a)), or into the VC
originally occupied by the unblocked packet (in case (b)). In
case (b), the unblocked packet will eventually leave the router,
leaving an empty VC equivalent to case (a). The introduction of
an empty VC into the deadlocked ring can guarantee forward
progress, breaking the deadlock.

The walk-through example in Fig. 1 had an unblocked packet
in Router 3. However, this might not always be true. Next, we
discuss how an unblocked packet can be introduced into the
router, in case it does not exist, via a Bubble Exchange.

3) Bubble Exchange: With the current BM technique
discussed so far, it is still not guaranteed that deadlock will
be broken, depending on the output directions of the buffered
packets. Consider the three cases present in Fig. 2. Each column
in the figure shows a deadlock scenario, bubble exchange and
final state of the router after exchange. Like before, the initial
of the direction present on the packet is the direction in which
the packet is intended to go. Colored packets in the router are
the ones which are involved in the deadlock ring, there state



is show before deadlock, during bubble exchange and after
deadlock in row-I, II and III respectively.

Consider Row-I. Case A shows a 2 router deadlock. Packets
intending to go East are sitting in the east input port at the first
router, and those going west are sitting at the West input port of
the neighboring router, leading to a deadlock dependence. This
would not occur in a baseline design if u-turns are not allowed.
However, with bubble movement, this scenario is possible -
recall that in Fig. 1(III), the North input port of Router-3
houses a packet that wants to go North. In Row-1, Case A, no
amount of bubble movement in the two routers can resolve
the deadlock, since all packets in the respective routers point
to the same direction. From the necessary condition described
in §III-A2, this is because of the lack of an unblocked packet
in either of the routers. Row-1, Case B shows a 3-router
deadlock. Here bubble movement is possible with the packets
requesting different output ports. We do not enumerate all
possible scenarios here in the interest of space, but all bubble
movements will still end up with a 2-router or a 4-router
deadlock. Finally, Row-2 Case C shows a 4-router deadlock,
where no amount of bubble movement can resolve it, again due
to the absence of an unblocked packet in any of the routers.

To resolve deadlocks in such scenarios, we introduce the
concept of bubble exchange (BE). The idea is to force forward
progress of one of the packets by moving it into the bubble
at its downstream router, and then recover the bubble by
moving one of the packets at the downstream router into
this router. BE is initiated by the upstream router when
all the neighboring downstream routers that the packets of
this upstream router want to get to have an occupancy of
N − 1, where occupancy is defined as the number of non-
empty VCs in the router across all ports (except local),
and N = num inport×num vcs per inport except local. In
other words, BE is initiated when the downstream routers are
completely full, except their BBs. BE takes two steps:

1© Upstream router routes one of the packets to the
downstream router to sit at the BB of the downstream router.
This is equivalent to the upstream router consuming the BB
of the downstream router. This leads to a situation where
there are 2 bubbles present at upstream router and none at the
downstream router, breaking the BB invariant temporarily.

2© The downstream router mis-routes one of its packet to
upstream router’s original bubble, to recover its bubble back.
The input VC of the packet chosen to mis-route is selected at
random, and becomes the BB at the downstream router.

Note that steps 1© and 2© described above, are performed in
tandem on bi-directional link connected between the upstream
and downstream routers involved in the bubble exchange.

Row-2 in Fig. 2 shows bubble exchange in action for all
three cases. The deadlocks in all cases are broken in Row 3.

Why does Bubble exchange guarantee deadlock free-
dom? As discussed in §III-A2, BBR works only if a router
has an unblocked packet that is guaranteed to eventually leave.
Bubble exchange forces one of the packets in the router to make
forward progress towards its destination, essentially making
it an unblocked packet for the purposes of the proof. In the

worst case, a packet might move all the way to its destination
via bubble exchange, where it will eventually get consumed2.

Does Bubble exchange require deadlock detection? No.
It is important to note that the bubble recovery algorithm
is a heuristic for exchanging bubbles between neighboring
routers. We do not actually detect the deadlock, thereby do
not pay its associated overheads in terms of timeout counters
and probes [11]. This implies that there can be false positives.

Why is Bubble exchange performed at an occupancy
of N-1? In BBR, the necessary condition for a deadlock is
an occupancy of (N-1), since the brownian bubble is always
empty. Since explicit deadlock-detection is not performed, an
occupancy of N-1 triggers a guaranteed forward movement
of one of the blocked packets via bubble exchange. This
guarantees that there will never be any false negatives, though
there may be false positives (i.e., an occupancy of N-1 due to
congestion and not a true deadlock).

Does Bubble exchange lead to mis-routing? Sometimes,
but not always. Bubble exchange always leads to forward
progress of at least one packet. In certain cases, the other
packet might be moved to a neighbor that is not its actual
preferred output port. However, in other cases, such as Fig. 2-
Case A, both packets might end up making forward progress.

Does Bubble exchange lead to livelocks? It is theoretically
possible, though extremely unlikely for the same packet to keep
getting misrouted as part of the bubble exchange condition at
every router it enters, never reaching its destination, leading to
a livelock. Livelocks can be avoided by disallowing more than
a certain number of misroutes for any packet, like prior works
on mis-routing have explored [23]. We do not implement it in
BBR for simplicity. Our evaluations show that the number of
misroutes is actually quite low.
B. Implementation

Fig. 3 shows the BBR microarchitecture. In addition to
modules such as VC Allocator, Route Compute, Switch
Allocator and Crossbar which have their usual function as
in a baseline router, we introduce a few additional ones to
implement BM and BE. We implemented the BBR modules
in RTL, and observed around 7.4% area overhead (Fig. 3)
and 4.3% power overhead over a 4-VC baseline router [25]
post-layout at 28nm. BBR introduces an additional mux in
front of each VC, but meets timing at 1GHz like the baseline.
Thus BBR’s additions are extremely light-weight.

We also show a a flow-chart of the BBR operation in Fig. 3.
Each functional unit specific to BBR is color-coded with the
same color as its microarchitecture counterpart. We describe
key components next.

1) Bubble Movement Epoch Unit: Based on the configurable
epoch parameter k, the Bubble Movement Epoch unit triggers
a BM every k cycles. BM may be aborted in a special case
discussed later in the credit management unit.

Bus. We add a small bus inside the router connecting the
outputs of all the VCs excluding the port VCs. This is to

2We assume that the protocol is deadlock-free, and any packet in a router
may stall but will eventually get consumed by its destination.



Fig. 3: Figure showing router micro architecture on the left for Brownian Bubble Router router and flow diagram illustrating the order in
which Brownian Bubble Router specific actions are performed on right. Note that Brownian Bubble Router router concept is generic to any
underlying topology, hence number of ports are kept as N for generality of the idea. Here VC stands for virtual channel. Specific details
about each module are discussed in §III-B. The area consumed by the router at 28nm is also shown.

facilitate bubble movement between two ports. We chose as bus
based on the insight that at any point in time there is only one
packet which would be moved to the BB to perform BM. This
implies that there will never be contention on this interconnect
media, which suits the bus. Also, since we randomly move
bubble across input ports by giving preference to empty input
ports over non-empty input ports, a bus which connects all input
ports fits our purpose. The input to the VCs can be multiplexed
between the input link and the bus. This is determined by the
arbiter which handles all the multiplexers using control signals
(MOV(1), MOV(2), ...). There will never be any contention
for the input port of a VC between the link and the bus, since
the VC into which a packet is being written from the bus was
the BB, and will never receive a packet from the input link.

Arbiter. If a BM is triggered, the arbiter chooses the input
port for BM by choosing an input VC at an input port in a
round-robin manner. Priority is always given to a empty VC,
if available. The bus-arbiter unit sends out two signals, the
MOV EN and the MOV signals. The MOV EN signal is sent
to the bus to indicate that a BM is impending in the next cycle
while the MOV signal is used to select the port to where this
movement will happen (in other words, the port from where a
packet will be read out and put on the bus to be inserted into
the current BB). This signal remains active till all flits of the
packet have been moved.

2) Credit Management Unit: Credit management is an
integral part of the BBR. As mentioned earlier, no packet
is allowed to come and occupy the VC tagged as the brownian
bubble. This is ensured by not sending a credit for this VC
to the upstream router so that it believes that this VC is
actually occupied. Thus a BB simply looks like a full VC

to the upstream router. During BM, two cases arise.
Case I: The bubble is moved to a full VC (i.e., the packet

from the full VC is moved into the bubble). In this case, no
credits need to be sent to the respective upstream routers. This
is because both upstream routers connected to the downstream
router believe that the VCs are full - it is agnostic to the fact
that one has an actual packet, one is the BB, and the bubble
moved between them.

Case II: The bubble is moved to an empty VC. The VC that
becomes the BB needs to send a decrement credit signal to the
upstream router to inform it that this VC is actually not empty.
The original VC which was the BB needs to send an increment
credit signal to the upstream router signaling that this VC is
now free. This is done after one cycle of delay to manage a
corner case where the upstream router may have already started
sending flits for a new packet into this VC, which is currently
on the link. This is handled by aborting the bubble movement
as follows: (a) if the upstream router receives a decrement
credit for a VC that it has already started sending flits to,
it ignores the decrement credit, (b) if the downstream router
receives flits into a VC that became the BB in the previous
cycle, the original (empty) VC is tagged as the BB again. (c)
the original VC sends its increment credit signal after waiting
for a cycle only if the above scenario does not occur.

3) Bubble Exchange Unit: Each router keeps track of
its occupancy, which was defined earlier in §III-A3. If the
occupancy of the router reaches (N-1), where N is the total
number of input VCs at all ports of the router (except local), it
collects the occupancy of its neighbors. If the neighbors have
an occupancy greater than a certain threshold (max threshold is
N-1), BE is triggered by setting the EXC flag. This reads one



TABLE I: Network Configuration.
Network

Topology 8x8 Mesh
Router latency 1-cycle
Num VCs 1, 2, 3, 4
Buffer Organization Virtual Cut Through

Single packet per virtual channel
Target Networks

Deadlock Avoidance West-first and Escape VC
Deadlock Recovery Static Bubble [11] and SPIN [12]
Brownian Bubble Router BBR-k (k= BM frequency)

of the packets from the router, and sends it out of the crossbar
and output link to the neighboring router. The neighbor in turn
sends a packet to this router which is added into this router’s
BB. A subtle point to note is that BE does not steal any useful
link bandwidth since the occupancy of (N-1) at both routers
means that they were unable to send packets to each other via
regular switch allocation due to the lack of credits, and so the
links between them were anyway idle.

BE is a measure of how reactive the router is towards
recovering from the deadlock by exchanging the bubble. The
occupancy metric we use to trigger BE is just a heuristic. From
a correctness point of view, BE can be triggered more pro-
actively or at a fixed time epoch in alternate implementations.
C. Adding BBR over Alternate Router Microarchitectures

BBR’s underlying mechanism of periodic bubble movement
across input ports within a router, followed by occupancy-
driven bubble exchanges between neighboring routers, can
be applied to any input buffered VC router to guaran-
tee deadlock freedom in the network, as we showed in
§III-A2. This makes it agnostic to the underlying topology
(mesh/high-radix/irregular/reconfigurable [26]), routing algo-
rithm (XY/adaptive [27]) and router bypass optimizations [25].
BBR can also work with wormhole routers, but will require
additional complexity (such as packet truncation [22]) to
manage ordering since parts of the same packet might end up
at different input ports of the same router due to BM.

IV. EVALUATION
A. Methodology

We model Brownian Bubble Router in the Garnet [28] cycle-
accurate NoC simulator. For BBR, we implement a minimal
fully adaptive random routing algorithm. We use credits at
the downstream router to decide the direction if more than
one choice exists. Table I lists the system configurations we
evaluated. We contrast BBR against both classic deadlock-
avoidance (West-first and escape VC) and state-of-the-art
deadlock-recovery (Static Bubble [11] and SPIN [12]) schemes.
All networks use a single-cycle router. Recall that the rate of
bubble movement (BM) is a knob given to the network designer
to tune the frequency of bubble movement within the router.
We evaluate BBR with multiple BM epoch values and report
results with 1 (i.e., every cycle), 64 (every 64 cycles) and 1024
(every 1024 cycles). For BE, we empirically set the occupancy
threshold at downstream routers to 4.
B. Correctness

The primary claim of Brownian Bubble Router is to make
sure there is no deadlock that persists in the network. We show

0

20

40

60

80

100

0.02 0.12 0.22 0.32%
ag

e 
of

 p
ac

ke
t r

ec
ei

ve
d

Injection rate (packets injected/node/cycle)

8x8 Mesh
VC: 1

Routing: Random

BBR Bit-Complement Bit-Rotation Uniform-Random

0

20

40

60

80

100

0.02 0.12 0.22 0.32

%
ag

e 
of

 p
ac

ke
t r

ec
ei

ve
d

Injection rate (packets injected/node/cycle)

8x8 Mesh
VC: 4

Routing: Random

BBR Bit-Complement Bit-Rotation Uniform-Random

Fig. 4: Correctness of Brownian Bubble RouterḞor a fixed number
of packets for the simulation, x-axis shows total packets injected in
network per node per cycle and y axis shows %age of total packets
received at the end of simulation. Different traffic patterns deadlock
with fully-random routing, but BBR never deadlocks with any traffic.

this in Fig. 4 for a 8× 8 mesh topology. On y-axis we plot
the percentage of packets received over fixed packets injected
in the network. X-axis shows the injection rate at which these
packets are injected in the network. All traffic patterns use
fully random routing. Fig. 4 also shows how sensitive the
network is towards the number of VCs present per input port
in the router. We see that network deadlocks at much lower
injection rate when number of VCs is 1 compared to when it
is 4. This is especially stark in bit complement traffic which
deadlocks almost immediately in a 1 VC design. BBR performs
consistently by delivering 100% packets that are injected in
the network at all injection rate for all traffic patterns.
C. Performance

Next, in Fig. 5, we evaluate BBR against state-of-the-art
deadlock freedom techniques for for a 8×8 mesh at different
VC counts. In the interest of space, we only present results
for transpose, shuffle, uniform-random and bit rotation traffic
pattern for 2 and 4 VCs respectively. With 4 VCs, we observe
37% throughput improvement over WestFirst and escapeVC
(deadlock avoidance) on average and 3× improvement over
Static Bubble and SPIN (deadlock recovery). With 2 VCs, we
observe 44% improvement over WestFirst and escape VC, and
.2.5× improvement over Static Bubble and SPIN. For many
of the patterns, the performance improvements are higher at 2
VCs as opposed to 4 because of the path diversity provided by
fully adaptive routing enabled by BBR in all VCs. In contrast,
West-first lacks path diversity in the west direction, while
escape VC only provides full path diversity within one of its
VCs (the other one restricted to west-first).

With 1 VC, however, we found the latency with BBR to
be erratic at a few injection rates. This is because the input
port where the bubble resides essentially gets blocked for
the upstream router for a period of time, leading to uneven
and unpredictable delays until packet reaches its destination.
However, it is important to note that a 1 VC BBR design is
deadlock-free, as we showed earlier in Fig. 4.

We also performed an experiment to understand the perfor-
mance overhead BBR adds on top of an already deadlock-free
routing algorithm, such as XY. In Fig. 6, we plot the reception
rate for a baseline XY scheme and various BBR schemes with
2 and 4 VCs. We notice that an aggressive BBR-1 (that tries to
perform bubble movement every cycle) leads to a 25% drop in
throughput for uniform random and 35% drop in thoughput for
bit complement averaged over all VC count . But with higher
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Fig. 5: Performance of Brownian Bubble Router technique compared against recently proposed deadlock recovery schemes and well known
deadlock avoidance schemes such as escapeVC and WestFirst Routing, proving its superiority. Here x-axis shows total packets injected in
network per node per cycle and y-axis shows the average latency incurred by packets in cycles.
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Fig. 6: Overhead introduced when adding BBR over a baseline
deadlock-free XY routing algorithm. Here x-axis shows the packets
injected in network per node per cycle and y-axis, similarly shows
packets received in the network per node per cycle.
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Fig. 7: Bubble Movement Frequency: y-axis shows ratio of buffer
reads (or writes) due to BM over the baseline buffer reads (or writes)
and x-axis shows the packets injected in the network per node per
cycle. BBR-1 shows the highest BM for bit-reverse compared to other
BBR-k; this behavior is opposite in uniform random traffic. This shows
distribution of BM across BBR-k is highly traffic dependent.

values of the epoch, the drop is only 9%. Recall that at high
loads, BE kicks in once the upstream and downstream routers
start becoming full, which leads to a performance differential
at high loads, even if the BM epoch is set very high. If we
restrict BE to occur on a very high fixed threshold, rather than
based on occupancy, BBR would have essentially no overhead
if the underlying algorithm is inherently deadlock free.
D. Bubble Movement and Bubble Exchange Frequency

Having shown the correctness and performance benefits
of BBR, next we study the potential overhead. As discussed
earlier in §III-B, the area overhead for implementing BBR is
negligible. However, each bubble movement involves reading
a packet out of its current VC and writing it into an empty
VC, increasing the total buffer activity. The same occurs in
during a bubble exchange as well, across neighboring routers.
This can naturally have energy implications.

We quantify this overhead in the next set of experiments. In
Fig. 7 and Fig. 8 we plot the ratio of additional buffer reads
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Fig. 8: Bubble-Exchange Frequency: here y-axis shows ratio of buffer
reads (or writes) due to BEs over the baseline buffer reads (or writes)
and x-axis shows the packets injected in the network per node per
cycle. We see that BBR-1 has highest BE over any other BBR-k.

(or writes) due to BM and BE respectively over the baseline
buffer reads (or writes) for various values of BBR-k, where k
is the frequency of BM. In the interest of space, we plot the
behavior for two patterns - uniform-random and bit-reverse
which show contrasting characteristics. Other traffic patterns
showed similar behavior to one of these patterns. Note that a
BM between empty VCs does not count as a buffer read/write.

In Fig. 7, we highlight that there is no bubble movement up to
a certain injection rate; this is because at low loads, more than
two VCs are empty across all ports of the router in most cases,
so a BM does not need an explicit packet read and write. This
shows that BM actually adds no energy overhead, especially
at low to medium loads which is the common operating point
for most NoCs. At high injection rates, the network is more
susceptible to deadlock, and naturally the number of BMs go up
as well. One might expect low values of k (i.e., high frequency
of BM) to lead to higher number of buffer reads/writes. This
can be seen as true in bit rotation, where BBR-1 shows up
to 4x more buffer reads/writes than BBR-64 post saturation.
Counter intuitively, though, the opposite is seen in uniform
random traffic, where a higher values of k actually end up
leading to more bubble movements overall. This is because
with a low frequency of BM, deadlocks persist for longer and
end up requiring more BMs to provide forward progress. This
shows a subtle yet important feature of BBR that it is adaptive;
hence the energy consumption will be more only if the traffic
is susceptible to deadlock.

In Fig. 8, we see that BBR-64 and beyond, the number
of BEs is negligible. A notable exception is BBR-1 (moving
bubble every cycle) which shows the highest number of BEs
over any other BBR-k (lower frequency of bubble movement).
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Fig. 9: A 4x4 Mesh with a faulty link (shown with X). XY routing can no longer work. Traditional deadlock avoidance (Spanning Tree) will
disable the use of the grey link to avoid cycles, leading to non-minimal routes. Thus BBR provides higher saturation throughput.

This can be understood as follows - high BM ends up moving
packets to other free VCs in the router very frequently, leading
to more occupancy within the router. This in turn triggers BE
more frequently. In contrast, at low BM frequency, the router
tends to remain emptier (especially at low loads), leading to
fewer forward movements due to BE.

In summary, the impact of the BM frequency depends heavily
the traffic pattern and injection rate. For uniform random
traffic, we observe that BE, not BM actually tends to dominate.
Moreover, the energy overhead can be controlled via various
knobs exposed to the designers such as the BM frequency and
BE occupancy threshold.
E. BBR for Irregular Topologies

Next, we study BBR performance with an irregular topology
as shown in left most sub-figure in Fig. 9. Here the link between
routers 5 and 6 in a mesh is broken, which could be due to
various reasons such as power gating or dynamic faults in
the network [3]. A challenge with irregular topologies is that
traditional turn-restrictions (such as XY) will not longer work
- for e.g., any packet from 5 to {10, 11, 14, 15} will have to
make a Y to X turn at 9. Similarly, a Y to X turn at 2 will
have to be allowed. Such turns could lead to a 5 → 9 → 10
→ 6 → 2 → 1 → 5 deadlock. In such scenarios, the deadlock
free routing option is to construct a spanning tree [3], [18],
[19], [20], which will not allow the use of the link between
router 1 and 2 (highlighted in grey) to avoid cycles. BBR does
not need any such restrictions and enjoys the full path diversity.
This translates to around 40% higher throughput on average
over the spanning tree routing algorithm as shown in Fig. 9.

V. CONCLUSION

We propose a novel deadlock-freedom scheme called Brow-
nian Bubble Router (BBR) which guarantees forward progress
of packets through every router in an interconnection network.
This is done by a clever mechanism of circulating one bubble
through all ports of the router, and periodically exchanging it
between neighbors. This prevents any deadlock from persisting
in the network. BBR provides the following advantages over
baseline schemes: (i) it is topology and routing algorithm-
agnostic since BM occurs within the router, and BE between
direct neighbors. This makes it highly applicable across
domains - homogeneous many-cores, heterogeneous SoCs,
faulty (or power-gated) NoCs with missing links/routers, (ii) it
requires no turn restrictions or escape VCs, thereby providing
full path diversity - which in turn translates to higher throughput,
(iii) is extremely light-weight. On a 8x8 mesh, across a suite of
traffic patterns, BBR provides 40% and 4× higher throughput
on an average, respectively, over state-of-the-art deadlock
avoidance and recovery techniques.
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