SEESAW: Using Superpages to Improve VIPT Caches

Mayank Parasar
School of ECE
Georgia Institute of Technology
Atlanta, GA, USA
Email: mparasar3@gatech.edu

Abstract—Hardware caches balance fast lookup, high hit
rates, energy efficiency, and simplicity of implementation. For
L1 caches however, achieving this balance is difficult because
of constraints imposed by virtual memory. L1 caches are
usually virtually-indexed and physically tagged (VIPT), but this
means that they must be highly associative to achieve good
capacity. Unfortunately, excessive associativity compromises
performance by degrading access times without significantly
boosting hit rates, and increases access energy.

We propose SEESAW to overcome this problem. SEESAW
leverages the increasing ubiquity of superpages! — since super-
pages have more page offset bits, they can accommodate VIPT
caches with more sets than what is traditionally possible with
only base page sizes. SEESAW dynamically reduces the number
of ways that are looked up based on the page size, improving
performance and energy. SEESAW requires modest hardware
and no OS or application changes.

Keywords-Virtual Memory; L1 Caches; Memory systems;
Superpages.

I. INTRODUCTION

L1 caches service the majority of CPU and coherence
requests, and are important for overall system performance
and energy. Modern L1 caches are designed to balance:

(D Good performance: L1 caches must achieve high hit
rates and low access times. This requires balancing the
number of sets and ways in the set. Higher associativity
can increase hit rates, but worsen access times.

@) Energy efficiency: Cache hit, miss, and management (e.g.,
insertion, coherence, etc.) energy must be minimized. Higher
set-associativity may reduce cache misses and subsequent
energy-hungry probes of larger L2 caches and LLCs. But
higher set-associativity also magnifies L1 lookup energy.

3 Simple implementation: L1 cache cycle times are crucial
to core timing. For good performance, L1 caches should be
simple and fast, with low load-to-use latency.

Unfortunately, the virtual memory subsystem makes it
challenging to design L1 caches that simultaneously achieve
all these goals. The key problem is that virtual memory
necessitates virtual-to-physical address translation. Designers
accelerate address translation with per-CPU Translation

By superpages, we refer to any page sizes supported by the architecture
bigger than base page size.

Abhishek Bhattacharjee
Department of Computer Science
Rutgers University
New Brunswick, NJ, USA
Email: abhib@cs.rutgers.edu

Tushar Krishna
School of ECE
Georgia Institute of Technology
Atlanta, GA, USA
Email: tushar@ece.gatech.edu

Lookaside Buffers (TLBs). To accommodate increasingly
memory-intensive workloads with large page tables, processor
vendors design large TLBs. But this presents a problem for
L1 caches, which are physically addressed and require TLB
access prior to cache lookup. Fig. l1a shows that larger and
hence slower TLBs delay L1 cache access.

Architects have historically used virtual-indexing and phys-
ical-tagging (VIPT) to overcome this problem. Fig. 1b shows
that VIPT L1 caches are searched in parallel rather than in
series with the TLB. L1 cache set selection is overlapped
with TLB lookup, which must complete by the time L1 cache
tag comparisons commence. This approach enables larger
TLBs, but it complicates our ability to realize L1 caches that
achieve (I)-@3). The main problem is that VIPT caches require
the cache index bits to be entirely subsumed in the page
offset field. This restricts the number of sets implementable in
the cache. For example, consider x86-64 systems, with 4KB
baseline pages. Since the page offset is 12 bits and cache
lines are typically 64 bytes, this leaves only 6 bits for the set
index. In other words, vanilla VIPT L1 caches for x86-64
systems can integrate at most 64 sets. This means that VIPT
L1 caches can be grown only by increasing associativity,
rather than by implementing more sets, as Fig. 1c shows.
For many real-world workloads, as we show in Section III,
increasing associativity provides only diminishing hit rate
benefits, but significantly worsens access latency and energy.

Studies have attacked this problem with virtually-indexed,
virtually-tagged (VIVT) caches [1, 2], and approaches that
implement VIPT but use a subset of the virtual page
number bits for cache indexing [3]. Some of these ideas
have been implemented in select products (e.g., MIPS
R10K) [4]. But such designs can be complex and require
dedicated hardware to track down virtual address synonyms?,
particularly on store operations. Since there are cases when
OSes use synonyms aggressively to implement operations
like memory deduplication, copy-on-write, fork, etc. [5, 6],
VIPT L1 caches (which do not suffer from the synonym
problem) remain more commonly used in real-world products.
Similarly, other approaches reduce L1 cache associativity via
opportunistic virtual caching [7], synonym awareness [8—12],

2Synonyms are scenarios where multiple virtual addresses map to the
same physical address.

and by pushing part of the index into the physical page
number [8]. These are useful but remain complex compared
to VIPT.

This paper proposes an alternate approach we call Set-
Enhanced Superpage Aware (SEESAW) caching. SEESAW is
inspired by the following — VIPT L1 caches were originally
designed when OSes predominantly allocated (and in some
cases only supported) one page size. However, modern
systems support and actively use not only these conventional
base pages, but also larger superpages (e.g., 2MB and 1GB on
x86 systems) [13, 14]. Superpages have historically reduced
TLB misses and lowered page table size [5, 15, 16]. But we
go beyond and ask, can superpages also be used to realize
VIPT caches that better achieve goals (), @), and (3)?

Conceptually, superpages are an attractive candidate to
improve VIPT because they have wider page offsets. For
example, x86-64 systems support 2MB and 1GB superpages
with 21-bit and 30-bit page offsets. Fig. 1d shows that
superpages can therefore accommodate more index bits for
VIPT, and consequently permit more cache sets than what is
possible assuming only 4KB base pages. SEESAW leverages
this observation to dynamically reduce set associativity for
accesses to data residing in superpages. In other words,
SEESAW supports three types of cache lookups:

(D CPU lookups for data in a superpage: SEESAW checks
fewer L1 cache ways than traditional VIPT caches, reducing
hit time and saving energy.

@ CPU lookups for data in a base page: SEESAW checks
the same number of cache ways as traditional VIPT and
hence achieves the same performance and energy.

(3 Coherence lookups: L1 coherence lookups use physical
addresses. Consequently, they do not need TLB lookup.
However, they still needlessly look up many L1 ways since
VIPT necessitates high L1 set-associativity. SEESAW solves
this problem, allowing all coherence lookups, whether they
are to addresses in superpages or base pages, to check fewer
L1 cache ways. Coherence energy reduces dramatically.

Overall, SEESAW does not replace but instead improves
the readily-implementable concept of VIPT. To that end, our
contributions are as follows:

e We study cache lookup time and energy as a function of
size and associativity with a commercial SRAM memory
compiler. We also study average memory access time of
real-world cloud and server workloads with associativity.
Our results highlight the limitations of traditional VIPT.

e We perform a real-system characterization study on the
prevalence of superpages in modern systems. We find
that current Linux/x86 systems create ample superpages
for SEESAW to be effective.

e We use cycle-accurate software simulation to model

SEESAW’s performance and energy benefits on an in-
order and out-of-order architecture based on Intel’s
Atom and Sandybridge processors. Against 32KB and
64KB baseline L1 VIPT caches, SEESAW achieves 3-
10% better runtime, and 10-20% better memory access
energy. We show how these numbers vary with memory
fragmentation, which impacts the OS’s ability to generate

superpages.

Ultimately, SEESAW represents a new way to reap the
benefits of superpages. We believe that this is well-aligned
with recent trends in OS design, where superpage adoption is
becoming ubiquitous and necessary to combat the increasing
memory pressure of emerging memory-intensive software
[13, 15-17]. SEESAW represents an opportunity to design
hardware that piggybacks atop this body of parallel work.

II. BACKGROUND

SEESAW targets improvements in the interactions between
the TLB and L1 cache. We briefly discuss how modern
systems implement this layer today.

A. TLB and L1 Cache Interface

Modern CPUs use TLBs and OS-mantained page tables to
translate virtual addresses (VAs) to physical addresses (PAs).
TLBs interface with caches in three ways:

Physically-indexed, physically-tagged (PIPT): The L1 cac-
he is looked up after the TLB, making this the slowest
approach. PIPT is uncommon in real-world processors.

Virtually-indexed, virtually-tagged (VIVT): L1 cache ac-
cesses can proceed without a prior TLB lookup. While VIVT
caches have been implemented in some real-world products,
they remain sufficiently complex (particularly in synonym
management) to preclude ubiquitous adoption.

Virtually-indexed, physically-tagged (VIPT): This remains
the “typical” way to implement L1 caches but is constrained
in its ability to grow using larger numbers of sets. VIPT
cache capacities can usually be increased by adding more
ways per set. This is reflective on modern chips like Intel’s
Skylake [18] which uses 8-way set-associativity for its 32KB
L1 since the base page size is 4KB.

B. System Support for Superpages

For years, Linux, FreeBSD, and Windows have supported
2MB and 1GB superpages (in addition to 4KB base pages)
on x86-64 systems. Similarly, ARM systems support 1MB
and 16MB superpages. While the adoption of superpages
from research studies [16, 19] to production systems has
taken decades, the advent of big-data workloads has meant
that superpages are widely used today [4, 13-15, 20-22]. In
particular, support for transparent 2MB superpages is now
sufficiently mature that it is enabled by default on production
OSes like Linux [13]. Naturally, there may still be situations

v

(a) Physically-Indexed Physically Tagged (PIPT):
Serial TLB and Cache Access

(b) Virtually-Indexed Physically Tagged (VIPT):
Parallel TLB and Cache Access

.
Virtual Address (VA) E VPN Page Offset Cache Size | Page Size | Page Offset | Byte Offset | Set Index | Assoc.
' | Byte offset (b) 2kxax2b| 2¢ p b k a
! T index(| V] to8 | Datablock | 32kB | 4kB 12 6 6 8
H 32kB 2MB 21 6 6 8
Eb SarsOffeetra]] Physical Address (PA) EPA 64kB | 4kB 12 6 6 16
! 64kB 2MB 21 6 6 16
tag (t) Index (k) Byteoffset(b) E I EPN [Page Offset(p]] ‘ | (c) Baseline VIPT Cache Parameters
|
‘ v ‘ tag ‘ Datablock ' tagl(t) Cache Size | Page Size | Page Offset | Byte Offset | Set Index | Assoc.
H ®—’HIT 2kxax2b 20 p b k a
32kB | 4kB 12 6 6 8,
! . 32k | 2MB 21 6 7 47
O— wrr ﬁ? : VIPT Constraint: k+b < p BAxE 5 o 7 z 161
time i 64kB_| 2MB 21 6 8 4
|
H
H
H

(d) VESPA (VIPT enhancements for
superpage accesses) Cache Parameters

Figure 1: Overview of SEESAW compared to traditional VIPT caches. SEESAW dynamically changes its associativity for superpages.

[1DM [4-way [8-way O 16-way [32-way obm 2-way 0O 4-way
_100 =6 0 8-way O 16-way 0 32-way 02 abMm 2-way B4-way
Z 80 Es 2 00 8-way 0 16-way 032-way
% 60 §4 @0.15
@ 40 cji g o1
[1] %)
> 20] o 0.05
: 1) 11 O O Y
0 S LT RN FRE 8°% |l oIl ool
16kB 32kB 64kB 128kB 256kB 16kB 32kB 64kB 128kB 16kB 32kB 64kB 128kB

(a) Avg. Miss-per-kilo-instructions (MPKI)

(b) Cache Access Latency

(c) Cache access energy

Figure 2: Effect of MPKI, cache latency, and energy as a function of associativity for different cache sizes.

when base pages are preferred. This happens, for example,
when finer-grained protection is necessary [5, 23]. Multiple
page sizes are even being integrated on mobile OSes like
Android [24].

Hardware vendors have responded to the ability of modern
OSes to more aggressively deploy superpages by designing
TLB hardware with greater capacity to cache superpage
translations. For example, in some architectures (particularly
ARM and Sparc processors), fully-associative L1 TLBs
maintain translations for multiple page sizes concurrently. In
other architectures (typical of Intel processors and some AMD
processors), L1 TLBs are implemented as set-associative
structures, with separate L1 TLBs for different page sizes.
For example, Intel Sandybridge, Haswell, and Skylake chips
maintain separate L1 TLBs for 4KB, 2MB, and 1GB pages
[22, 25]. The L1 TLBs are backed by larger L2 TLBs. As
OS superpage support has improved, L1 TLBs for 2MB/1GB
pages have doubled from Sandybridge to Skylake, and L2
TLBs are now large 1536-entry structures that support not
just 4KB pages, but also 2MB superpages. In other words,
processor vendors are already tailoring their TLB architecture
to use superpages more aggressively. We believe that it is
time to architect L1 caches to follow suit.

II1. MOTIVATION

A. Impact of Associativity on MPKI

One might expect L1 cache miss rates to reduce appre-
ciably for high levels of associativity. But Fig. 2a shows
different trends. We collect memory traces from a collection

of workloads from Spec, Parsec, Cloudsuite (i.e., tunkrank),
and Biobench (i.e., mummer and tigr) as well as other server
workloads like graph500, the Nutch Hadoop workload, the
Olio social-event web service, the Redis key value store,
and MongoDB. Fig. 2a plots MPKI averaged across the
applications as a function of cache associativity, for 16-
128KB caches. Increasing associativity beyond 4 does not
significantly reduce miss rates. This is because L1 caches are
small and service requests only from one hardware context (or
two-four if we are using SMT). Low associativity is enough
to reduce conflict misses, after which the L1 is limited by
capacity misses [7]. In this regard, L1 caches fundamentally
differ from LLCs, which are order of magnitude larger and
typically require 8-16 ways to mitigate set conflicts for
requests from multiple cores. Nevertheless, VIPT constraints
dictate that L1 caches can only be grown by increasing
associativity despite modest hit rate benefits. Perniciously,
access time and energy go up, as we discuss next.

B. Impact of Associativity on Latency/Energy

We worked with SRAM designers to model state-of-the-art
L1 caches. We used an SRAM compiler from for TSMC
28nm [26] to create data and tag arrays, and RTL to handle
indexing and tag comparisons across different configurations.
We synthesized multiple L1 configurations, varying size and
set-associativity using Synopsys Design Compiler. Since L1
caches are tightly coupled to the CPU pipeline, we went
for designs that optimize latency (rather than energy) by (i)
modeling parallel data and tag lookups to optimize access

100

§ a0
= £ 60
“6§_40
o S 85 c vwo VY g
a 8 8 € o o8 Q
S8 goemF5E
o

O Memhog (0%)
I Memhog (40%)
O Memhog (60%)

v
c
=}

)

Y2522 8 ;
& 52573 2 O Memhog (80%)
2 *§

Figure 3: Fraction of total memory footprint allocated with 2MB superpages on a real 32-core Intel Sandybridge system with 32GB of
memory. We show how superpage allocation varies as memory is fragmented with the memhog workload.

latency, and (ii) constraining the synthesis tool to aggressively
optimize to meet timing, steadily increasing the clock period
if it fails.

Fig. 2b plots access latency as we vary 16-128KB caches
from direct-mapped to 32-way. Consistent with current
systems like Intel’s Sandybridge/Skylake, for 32KB 8-way
set-associative caches we see 3-4 cycle access latencies.
In general, for each cache size, we observe access latency
increasing 10-25% at each step with associativity across all
cache sizes. Naturally, some of these caches configurations
are simply infeasible because of high access latencies — i.e.,
64KB/128KB caches with 32-way associativity. It may in
fact be more judicious at that point to modify the caches from
VIPT to PIPT, with lower associativity, but also lower access
latecy, for the best performance. Our quantitative analysis of
SEESAW takes these other design points into account.

Fig. 2c plots the total (dynamic and leakage) energy for
varying cache sizes and associativity. We found the SRAM
data array to be the dominant contributor. The energy graph
is correlated with the latency graph with a steady increase
with associativity. But the percentage increase can be 40-
50% on average at each step. We observed that this is due to
the synthesis tool aggressively trying to meet timing, which
becomes harder as associativity increases. To validate this,
we tried synthesizing all caches at 200MHz (not a viable
design point for high-performance caches) and found the
latency values to be much higher (given the available slack),
and energy increase with associativity flatter.

These trends match Figures 2.3 and 2.4 in Hennessy and
Patterson’s Sth edition [27] and we also validated them using
Cacti 6.5 [28]. We also scaled the cache latency numbers to
22nm and 14nm, using publicly available [29] L1-DCache
access latency numbers from Intel’s SandyBridge (32nm),
IvyBridge (22nm), and Skylake (14nm). We found that
absolute cache access times have gone down by 3% and 17%
respectively, over the 2 generations. However, the relative
trend between associativities remains the same. We use the
scaled numbers at 22nm in our evaluations.

This study reveals that increasing associativity beyond a
certain point hurts cache access latency and energy without
commensurately improving hit rates. The exact associativity
at which the latency crosses the target clock period or energy

becomes prohibitively high will depend on the technology
node. However, L1 caches today cannot be designed for a low
associativity since that is dictated by VIPT which constrains
the cache’s ability to support arbitrary numbers of sets (as
Fig. 1 showed). This is the problem SEESAW solves.

C. Superpages in Modern Systems

To quantify the prevalence of superpages, we profile a
32-core Sandybridge system with 32GB RAM, running
Ubuntu Linux with the 4.14 kernel series. We focus on 2MB
superpages as modern OSes typically have better support for
2MB pages than 1GB superpages (whose transparent support
is an area of active study) [5, 15]. The system had been
heavily loaded for over a year with user-level applications
and system activity (e.g., networking stacks, etc.). To further
load the system, we ran a memory-intensive workload called
memhog in the background. Memhog is a microbenchmark
for fragmenting memory that performs random memory
allocations, and has been used in many prior works on virtual
memory [5, 21, 22, 30, 31]. For example, memhog (50%)
represents a scenario where memhog fragments as much
as half of system memory. We enabled Linux’s transparent
superpage support [13], which attempts to allocate as much
anonymous heap memory with 2MB pages as possible. The
more fragmented the system, the harder it is for the OS to
allocate superpages.

Fig. 3 plots the fraction of the workload’s memory
footprint allocated to 2MB superpages. With low frag-
mentation (i.e., memhog (0-20%)), as much as 65%+ of
the memory footprint is covered by 2MB superpages for
every single workload. In many cases, this number is
80%+. Even with non-trivial memory fragmentation (i.e.,
memhog (40-60%)), superpages continue to remain ample.
This is not surprising, since Linux — and indeed, other OSes
like FreeBSD and Windows — use sophisticated memory
defragmentation algorithms to enable superpages even in the
presence of non-trivial resource contention from co-running
applications. It is only when contention increases dramatically
(memhog (80-90%)) that OSes struggle to allocate superpages.
Nevertheless, even in the extreme cases, some superpages
are allocated.

1GBVPN . 1GB Page Offset
~ L 2MBVPN 2MB Page Offset
< i 4KB VPN | N 4KB Page Offset
| Ca:che:rTag iSet Indexi Byte offset |Virtual Address (VA)
N 29 20+k; 20 1211 5 0
—~
Partition Index
r _____________________"I
: v - superpage?,
7 - % 2/ \k-entries |
k'b'tS: Translation-Filter-Table (TFT) :
kB TLB Miss
|““‘[““I. Page Walk
| |
4KB VP 1 4KB PPN
4KBTLB V/—— | | -V __]
: | Way 0 Way 1 Way 2 Way 3 Way 0 Way 1 Way 2 Way 3 \I
| T T T T N s T T T T N
! | | | | | EN| i i i i :
! Lo ‘ ‘ ‘ ‘ of [: : —
:) S, g Taq |Data| Tag | Data | Tag | Data [Tag| Data S| 8 —{Tag! Data| Tag | Data | Tag | Data | Tag | Data :
MB VP! [<1 , , : : e — : : i
LoMB TLB N ‘ ‘ ‘] : : —
| =2 : : : : == : : : b
| 15 ; ; ; ; = : : : —
| 1 | et 63 |]] — : N i i i oA
1GB vPN! —1 GB TLB Miss' | Partition 0 artition |
LG8 e LGB TL 1GE PPN : 16kB 16kB I
! L1-TLB | !
________ 4
Split or Unified TLB — Addr-Tag !
! I
: I
. I
:L1 Cache (Multiplexer) |
I

Data to Core

Figure 4: SEESAW for a 32KB data cache. SEESAW is amenable to both split TLB and unified TLB configurations.

We also studied FreeBSD and Windows and we found that
20-60% of the memory footprint of our workloads, running
on long-running server systems which have seen lots of
memory activity, are covered by superpages. On average, the
number is roughly 48%, matching similar observations about
superpage prevalence in recent work [20-22].

1V. SEESAW MICROARCHITECTURE

We showcase SEESAW with an example 32KB, 8-way
L1 cache operating at 1.33 GHz for x86 with 4KB base
pages, and 2MB superpages. We focus on 2MB superpages
because transparent OS support for 1GB pages is still in its
infancy. However, this approach generalizes readily to 1GB
superpages too. Moreover, we report SEESAW’s benefits on
other cache organizations in Section VI.

A. Hardware Augmentations

1) LI cache microarchitecture: Fig. 4 shows SEESAW’s
microarchitecture, which borrows from the well-known idea
of way-partitioning. In conventional way-partitioning, a cache
line is initially mapped to a set, but it is then also mapped to
a subset of the ways in the set. The specific ways that the line
can be mapped to depends on the particular hash function
that one might use. We propose a variant of this approach

to implement SEESAW. In our approach, each set is way-
partitioned. The number of ways in each partition is chosen
for its desirable latency and energy characteristics. For our
example 32KB cache, we use data from Section III-B to target
4 ways per partition per set. We then use the bits immediately
more significant than the set_index as the partition_index. In
our example, bit 12 of the virtual address therefore serves
as the partition_index. Therefore, SEESAW first uses the
conventional VIPT approach to select the desired set with
the set_index. After that, VIPT approaches are different for
accesses to lines residing in superpages versus base-pages.

Superpages: SEESAW exploits the fact that superpages have
wider page offset bits. Since the partition_index bits reside
in the page offset (i.e., bit 12 falls within the 21-bit page
offset for 2MB pages), they can be used to directly index
into the desired partition inside the set. The main benefit of
this is that only the ways in the partition, rather than the full
set, needs to be looked up, saving latency and energy.

Base-pages: Base-pages do not have sufficiently wide page
offsets to guarantee that the partition_index from the virtual
page number remain unchanged in the physical address space.
Consequently, all ways in all the partitions in the set must
be searched, just like traditional VIPT. Note that waiting
for address translation to complete first in order to identify

TFT eLookupanh VA
Tag (43b 2MB page
4KB page L1 TLB

Miss | [Fill

Mark

4KB/2MB page L2 T 2MB

region

Page Table Walkl Fill
(a) (b)

Figure 5: (a) The TFT consists of a list of 2MB virtual address
regions that backed by 2MB superpages; and (b) the TFT is looked
up in parallel with the L1 TLBs and is updated (or marked) whenever
an entry is filled into the 2MB L1 TLB.

partition_index defaults to the slower serial PIPT case. We
show how SEESAW avoids this subsequently.

We present the policy for indexing into one of the partitions
(for superpages) versus reading all ways (for base pages)
next. Table III presents the access latencies in the cache for
baseline and superpages across various cache sizes and clock
frequencies, to point to the robustness of this idea.

2) TLB-LI cache interface: For our 32KB cache example,
SEESAW must determine whether bit 12 in the virtual address
is unchanged in the physical address to know whether it can
be treated as a partition_index. This rules out the possibility
of waiting until TLB lookup completes to identify whether the
access is to a superpage. Instead, SEESAW predicts whether
the access is to a superpage in parallel with TLB lookup.

Recent studies investigate hardware page size predictors
[4, 25] to predict whether accesses are to superpages or
base pages. Most of these approaches have been used to
optimize the TLB hierarchy in the past, but could readily be
co-opted for SEESAW too. However, we use an even simpler
variant that consumes a fraction of the hardware from prior
approaches. Figure 5 shows our page size predictor, dubbed
the TRANSLATION FILTER TABLE (TFT).

TFT Structure. The TFT records a list of 2MB virtual
address regions backed by 2MB superpages in physical
memory. For 64-bit systems, this means that each entry
essentially stores a 43-bit tag” or identifier for a 2MB region
of the virtual address space. If a tag exists in the TFT, this
means that this 2MB region is backed by a superpage. Figure
5(a) shows that we use a direct-mapped TFT (although set-
associative implementations are possible) as we find that this
performs sufficiently well. Furthermore, a small per-core TFT
with 16 entries, totaling 86B of memory per core, accurately
tracks the vast majority of 2MB superpage accesses. For
comparison, this is roughly the size of an 8-entry L1 TLB.

TFT Lookup. Figure 5(b) shows how the TFT is looked
up in the TLB hierarchy. We show a system with split L1
TLBs for different page sizes but the approach generalizes
to any TLB hierarchy (including those with fully-associative
L1 TLBs unified for all page sizes). In (D), the CPU pipeline

makes a memory reference. The appropriate bits from the
virtual address are used to look up the L1 TLBs in &)-Q3). In
parallel, the TFT is looked up in @) by hashing bits 64-21 of
the virtual address (which identify the unique 2MB region of
the virtual address space). Many hash functions are possible,
but we find that a simple function that performs VA(64:21)
MOD (# of TFT entries) provides good performance. If the
tag matches in the TFT, this confirms that this address is
backed by a superpage, and this information is sent to the
SEESAW for a fast lookup we explain later.

TFT Fill. TFT fills can occur in multiple ways. Consider a
scenario where all L1 TLBs miss, prompting lookups of the
L2 TLB in). If the L2 TLBs misses, we perform a page
table walk, at which point we know the page size of the
desired translation. Suppose that this translation corresponds
to a 2MB superpage — as the translation is filled into the
L2 and L1 TLBs in &)-{), we also add this 2MB region
into the TFT). We also permit TFT updates whenever the
2MB page L1 TLB is filled. This includes cases with L2
TLB hits. Since the TFT is direct-mapped, fills kick out the
current entry without needing any replacement policy.

SEESAW leverages the TFT as follows. All memory
references look up the TLB hierarchy and L1 cache in parallel.
However, unlike conventional VIPT, SEESAW performs the L1
cache lookup speculating a superpage access; i.e., SEESAW
assumes at this stage that the partition_bit in the virtual
address remains unchanged in the physical address and can
thus be used to select the desired partition. In parallel with
the lookup of the ways in the partition, the TFT is looked
up. Since the TFT is small, it quickly (in about a quarter of
the cycle time at 1.33 GHz) establishes whether this virtual
address maps to a superpage region. If the TFT suffers a miss,
we do not know whether the lookup address is to a superpage
or not. Therefore, conservatively, the L1 cache logic begins a
lookup of the remaining partitions in the set. Accesses to lines
on superpages known by the TFT thus finish faster, while
those for base pages takes the same time as traditional VIPT.
Table I lists the cache lookup timeline on a case-by-case basis
for a 32kB L1 at 1.33GHz on an x86 machine with 4KB base
pages and 2MB/1GB superpages. A base-page takes 2-cycle
access similar to conventional VIPT, while superpage access
takes only 1-cycle. The behavior for other configurations
(Table III) and page sizes can accordingly be derived. Note
a TFT never sees hits for non-superpage accesses — i.e., the
TFT always misses for 4KB page accesses.

3) Relationship with Way-Partitioning: SEESAW is readily-
implementable because it uses a variant of way-partitioning,
which is already available on commercial chips. Traditional
way-partitioning is used to achieve resource fairness when
caches are accessible by multiple workloads. A hashing
function is applied to the memory address, and the output
determines the target ways in a set that the line can
possibly map to. This approach reduces inter-workload cache

Table I: Anatomy of a lookup using SEESAW.

Page Savings
Size TFT | Cachd Cycle 1 Cycle 2 over
Baseline
Partition lookup using partition_index (bit 12 of the Latency +
2MB Hit Hit VA). Tag matches. This is the same case as a Not Required. Ener y
traditional VIPT for a 4-way cache. &y
. Partition lookup using partition_index (bit 12 of the .
2MB Hit Miss | VA). Tag mismI;tch trgigpgers cache miss. Not Required. Energy
Partition lookup using partition_index (bit 12 of the | Other partition is read. L1 TLB
'MB % VA). TFT miss signal triggers a read of the misses trigger Level-2 TLB (if None
Miss remaining 4-ways of the adjacent partition (i.e., present) lookup which may trigger
assume a 4kB page). a page table walk.
Appropriate partition is looked up using the Other partition is read. L1 TLB
4KB s partition_index (bit 12 of the VA). The TFT miss misses trigger Level-2 TLB (if None
Miss signal triggers a read of the remaining 4-ways of the | present) lookup which may trigger
adjacent partition. a page table walk.

interference and enables QoS guarantees [32]. The downside
is an effective associativity reduction.

SEESAW realizes a form of selective way-partitioning; i.e.,
the superpages are way-partitioned. For our 32KB SEESAW
cache example, we use bit 12 as the partition_bit. This means
that successive 4KB regions in a superpage are strided across
the two partitions in each set. However, base pages remain
mapped to either of the two partitions.

SEESAW is orthogonal to and can be built on top of tradi-
tional way-partitioning. Note that traditional way-partitioning
is applied to LLCs, targeting scenarios where a single cache
services the requests of multiple workloads (e.g., applications,
VMs, foreground versus background tasks, etc.). SEESAW
targets per-core VIPT L1 caches instead.

4) Implementation Overheads: Our 32KB SEESAW cache
example dynamically changes associativity from 8- to 4-
way. The additional hardware needed for this is similar to
traditional way partitioning. Specifically, we need a partition
decoder (two 2:1 OR gates in Fig. 4). We also need an extra
2:1 mux at the end of the partitions choose between them.
Within each partition, SEESAW needs a 4:1 mux instead of the
8:1 mux used by baseline VIPT for the entire set. The actual
SRAM arrays for data and tags remain unchanged. Moreover,
the TFT requires only 86 bytes per core. We implemented a
SEESAW cache in RTL using the Synopsys SRAM compiler
for TSMC 28nm [26]. Access time increases by less than
1%, leaving cache cycle time unaffected at 1.33GHz. Lookup
energy for a 4-way access in SEESAW increases by just 0.41%,
which is still 39.43% lower than that for 8-way access in
the baseline.

B. Design Optimizations

1) Cache Line Insertion Policy: In our 32KB SEESAW
cache example, there are two potential line insertion policies.

(D 4way-8way insertion policy: On a cache miss to a line
in the superpage (see Table I), the victim line is chosen
from the partition that the line maps to. However, if there

is a miss to a line in a base page, the replacement victim is
chosen across either partition using LRU. SEESAW behaves
like a 4-way associative cache for superpages and a 8-way
associative cache for base pages from an insertion policy
perspective.

(@ 4way insertion policy: The victim is chosen using LRU
from the particular partition that the line maps to, regardless
of whether the line is in a superpage or a basepage. The 4way
policy uses a local replacement policy within the 4 ways
of the concerned partition, instead of a global replacement
within 8 ways of the original set, irrespective of page size.

We use 4way insertion in SEESAW for four reasons. First,
we use it for correctness, to handle scenarios where a page is
mapped both as a base page and a superpage. 4way-8way can
lead to the same line getting installed twice in the cache. A
uniform insertion policy for both base and superpages avoids
this problem. Second, we use 4way insertion for energy
reasons. LRU is simpler and saves energy on each cache-line
installation due to tracking and lookup of fewer ways. Third,
4way insertion achieves good performance. As an academic
exercise, we ran all our experiments with both policies, and
noticed only a 1% difference drop in hit rate with the 4way
policy, in line with the earlier observations in Fig. 2a. Finally,
4way insertion is useful for coherence lookups by reducing
lookup time and energy, as we discuss later in Section I'V-C.

2) Relationship with Way-Prediction: SEESAW filters”
out lookup of ways in a partition where we know that a
superpage cannot reside. This is symbiotic with past work on
way-prediction [33, 34]. Way-prediction predicts which way
in a cache set is likely to be accessed in the future. When
prediction is correct, access energy latency are reduced, as the
cache behaves like it is direct-mapped. Past work proposes
using schemes with MRU, the PC, or XOR functions to
achieve accurate prediction [34]. However, predictor accuracy
can vary, with good results when locality is good and poorer
results for emerging workloads with poor access locality
(e.g., like graph processing).

SEESAW presents an effective additional design point to
way-prediction. When accurate, way-prediction can help
reduce L1 cache access energy. However, it may not always
reduce access latency, since the L1 cache still needs to
wait for the TLB access to finish before doing a tag
comparison. Combining SEESAW with way-prediction can
allow SEESAW to present the right partition to the way-
predictor, which can then predict a way within the partition.
This can reduce both access latency and energy for superpage
accesses. Moreover, SEESAW can also help reduce the way-
predictor’s misprediction penalty for superpage accesses, as
the remaining ways in only that partition need to be looked
up, not the entire set. We evaluate the benefits of combining
way-prediction with SEESAW in subsequent sections.

3) Instruction Scheduling Issues: SEESAW is a general
technique that can be used on in-order and out-of-order
architectures. On out-of-order architectures, it is important to
consider interactions between the instruction scheduling logic
and SEESAW. In particular, modern out-of-order architectures
speculatively issue program loads/stores assuming that they
are cache hits. Instructions dependent on these memory
references are scheduled for execution assuming the that,
for example, the load will complete cache access in some
number of cycles. On a cache miss, the load/store and its
dependent instructions are squashed and rescheduled. The
challenge with a variable-hit-latency cache like SEESAW is
that instruction squashing and reissuing takes some number
of cycles. If the difference in cycles between the “fast” and
”slow” cache hit times is not sufficient, the primary source
of performance overhead can be from instruction squashing.
If these overheads become high, they can cripple the benefits
of variable-hit-latency caches. This challenge is not unique
to SEESAW, other variable-hit-latency optimizations such as
way-prediction face it as well in modern CPUs.

To address this, the instruction scheduler in SEESAW
begins by assuming the “fast” hit time, since SEESAW
inherently speculates that an access is to a superpage. If we
discover that the access is actually to a base-page, we squash
dependent instructions and replay them, this time assuming
the “’slow” hit time. We also apply an optimization to this
approach to handle situations when superpages are scarce,
which otherwise suffer from frequent instruction squashing
and rescheduling. Specifically, we add one counter for the
superpage TLB which tracks the number of its valid entries.
If this value is too low, we know that superpages are scarce.
In these cases, the scheduler begins by assuming a ’slow”
hit time. By sweeping our workloads, we have found that
setting the threshold of the counter to a quarter of the number
of superpage TLB entries achieves good performance. We
implement this policy in our instruction scheduler for out-of-
order cores based on Intel’s Sandybridge (see Section VI).

It is also possible to always conservatively assume a ”slow”
hit time in the scheduler, like the baseline. In such a design, a
faster hit due to SEESAW may not translate to overall runtime

|1 [1] [
o N Qo o8 o
-z Tz << <<
Partition Index < <g == ==

3 > > 3

z z z z

o o o o

-2MB/1GB TLB Miss
Partition 0 Partition 1 Partition 2 Partition 3

Figure 6: Partition decoder for 64KB SEESAW.

reduction, but will still provide the same energy benefits.

4) Scalability: When/if processor vendors scale cache size,
they will have to balance factors including (but not restricted
to) — desired L1/L2 TLB sizes, maximum permissible
L1/L2 TLB latency/energy, maximum permissible L1 cache
latency/energy, and so on. Depending on their optimization
goals and target workloads, designers may opt for VIVT,
PIPT, or VIPT caches. What SEESAW provides is the
flexibility of considering an additional design point that
achieves the performance and flexibility of VIPT, but does so
in a more scalable manner. To that end, SEESAW’s operation
for larger L1 caches mirrors the description of 32KB L1
caches. The difference is that the number of partitions
increases. This changes partition decoder circuitry. Fig. 6
shows a possible circuit of a bank decoder for a 64KB
SEESAW cache. Decoders for 128KB caches can be similarly
built. The number of ways in each partition is a design
choice depending upon the cache’s latency-energy profile as
a function of associativity. In this work, we assume 4-way
(16KB) partition size.

C. System-Level Issues

1) Cache coherence: All coherence lookups (invalida-
tions/probes) use physical addresses. With traditional VIPT,
they pay high-associative lookup costs. With SEESAW using
the 4-way insertion policy, the physical address can directly
identify the correct cache set and partition. Thus SEESAW
enables all coherence messages to pay the energy and lookup
costs for a 4-way lookup (instead of 8-way). These coherence
benefits apply to not just superpages, but also base pages.

2) Page table modifications: OSes can modify the page
table, which can splinter superpages into base-pages (or
vice-versa). SEESAW must handle these changes correctly.
Suppose that a superpage is broken into base pages. Lines that
belonged to the superpage must remain accessible. SEESAW
naturally achieves this as accesses to base-pages automatically
look up the partition that the superpage originally mapped
to. Additionally, however, the old 2MB superpage may have
an entry in the TFT, which must be invalidated. This can
be easily accommodated however; when a 2MB page is
splintered, the OS code executes a software instruction to
invalidate the corresponding TLB entries (e.g., invlpg in x86-
64, or tlbi in ARM) , which are now stale. These instructions
take as an argument the virtual page number. We bootstrap
off this existing instruction and modify the microarchitecture

to invalidate the TFT entry tagged with this virtual page
number as well, in parallel with the TLBs. Therefore, there
are no correctness issues when 2MB pages are splintered to
4KB pages.

Alternately, several base pages may be promoted to
create a superpage. Since SEESAW probes fewer ways, it
is possible a line from one of the prior base pages may
be cached in a partition that is no longer probed, which is
a problem if that line is dirty. We use a simple solution
for this. Normally, when the OS promotes base pages to a
superpage, it has to invalidate all the base page translation
entries in the page table. For correctness, OSes then execute
TLB invalidation instructions. These instructions take 150-
200 cycles to execute (we determine these latencies using
microbenchmarks, and these numbers are consistent with
measurements form Linux kernel developers). We extend
this instruction so that it triggers a sweep of the L1 cache,
evicting all lines mapping to each invalidated base page.
We have found 150-200 cycles ample to perform a full
cache sweep. We model such activities in our evaluation
infrastructure and find that page table modifications events
only minimally affect performance.

3) TFT Process IDs: Modern TLBs are ASID-tagged,
meaning that they need not be flushed on context switches
[22, 31]. Consequently, we studied the need to add ASIDs to
the TFT. We ultimately found that the area overheads were
high (i.e., almost doubling total area). We also found that the
performance overheads of not supporting ASIDs and having
to flush the TFT on context switches were less than 1% of
total performance. Therefore, we opted for a TFT without
ASID tags.

V. METHODOLOGY

Simulator. We use a Simics-driven cycle-accurate software
simulator to model SEESAW for both out-of-order and in-
order cores (modeled similar to Intel Sandybridge and
Atom respectively) [35]. Table II presents our target system.
For each case, we evaluate three sizes of L1 data caches
(32KB, 64KB, and 128KB) and three operating frequencies
(1.33GHz, 2.80GHz, and 4GHz). Table III shows access
latency of each configuration. Although not shown, we find
a l6-entry TFT, totaling 86 bytes of memory per core,
to work well for all these designs. This structure can be
accessed in a single cycle at all frequencies. Furthermore, the
numbers are scaled to 22nm from our 28nm SRAM results
presented earlier in Section III-B using standard scaling
factors [36] to be consistent with 22nm models for other
components in our simulator. Note that our design assumes
split TLBs, as are used on Sandybridge and Atom processors,
but SEESAW works with unified TLBs too. We assess
performance improvements by considering improvements
in IPC, and also extract energy improvements of the entire
memory hierarchy (the L1 cache, as well other caches and
memory). We apply SEESAW on the data cache, although it

Table II: System Parameters.

CPU Models

~Intel Sandybridge: 168-entry ROB, 54-entr;
Out-of-Order Instruction Sghedu%er, 16 byte I¥fetches per cyclz
In-order ~Intel Atom: Dual-Issue, 16-stage pipeline

Memory System

L1 Cache Private Split L1I (32kB) + L1D (Table III)
TLB (Atom) L1 (64-entry for 4kB, 32-entry for 2MB), 512-

entry L2
TLB Split L1 (128-entry for 4kB, 16-entry for 2MB)
(Sbridge) P y ’ y
LLC Unified, 24MB
DRAM 4GB, 51ns round-trip access latency

System Parameters

Technology 22nm
Frequency 1.33 GHz, 2.80 GHz, 4.0 GHz
Cores 32, 64, 128
Coherence MOESI directory

is also possible to apply it to the instruction cache. This may
be valuable with the advent of cloud workloads [37, 38] that
use considerably larger instruction-side footprints.

As Table IIT shows, the larger caches support unacceptably
high access latencies (e.g., 128KB, 32-way caches have
42-cycle access latencies). Naturally, one might consider
alternate designs at this point, such as PIPT caches with
lower associativity. Our quantitative evaluation compares
SEESAW against such alternatives.

Workloads. We collect memory traces from a real Sandy-
bridge system running Ubuntu v4.4. To ensure that our
system has memory fragmentation, and hence superpage
allocation frequency of realistic servers with long uptimes,
we collect traces on a system that has been running for several
months. Our workloads are a mix of Spec [39], Parsec [40],
Cloudsuite [37], and other important cloud workloads like
Olio, Nutch, Redis, MongoDB, and graph500. We use a
modified version of Pin [41] to collect traces. Each trace
contains 10-billion instructions from the target application,
in addition to instructions of other applications running in
parallel, such as memhog (Sec. III-C, and system-level
activity. This lets us study the performance of SEESAW in
the presence of real OS activity affecting superpage allocation
(such as fragmentation and defragmentation) rather than in
in isolation (which might undersell or oversell the scheme).

We profile the percentage of the memory references that are
to lines in superpages and discover that this number always
ranges from 53-95% in our workloads. Generally, workloads
like Nutch, Olio, Redis, MongoDB, graph500, and tunkrank,
which are representative of modern cloud workloads, see
70-95% of their references going to superpages.

VI. EVALUATION

A. Performance

Fig. 7-Fig. 9 plot percent runtime improvements in the
out-of-order and in-order architectures we model. To plot
all these data points, we performed three experiments. First,

[uny
QWO wLN

64KB
128KB =

Percent Performance
Improvement
32KB 0

cactus | cann | gems | g500 | gups | mcf

mumm|omnet| tigr | tunk

128KB_——

xalanc | nutch | olio | redis mongo

Figure 7: Percent improvement in runtime using SEESAW on an Q0O processor versus baseline VIPT. (Freq = 1.33GHz, L1 cache: 32KB

to 128KB.
18
w-l—‘
L2312
STE ¢
S ES m FH]
gL20
o g 2 29 0 22 022
= NIRIRS NIRRS NIRCYRS
o — ™ - o0 -

1.33GHz 2.80GHz 4.00GHz

Figure 8: Percent improvement in runtime using SEESAW on an
out-of-order processor versus baseline VIPT. We show the average,
minimum, and maximum improvements across all workloads for
all cache sizes, across 1.33GHz, 2.80GHz, and 4.00GHz operating
frequency.

Hs:‘l’12
S e 5
g§§6m
ge2o0
T < o ol m o ol m o ol m
a £ S X X S X X S X X
B §3 X HFIX Y3
™ — ™ — ™ —

1.33GHz 2.80GHz 4.00GHz

Figure 9: Runtime improvement using SEESAW on an in-order
processor versus baseline VIPT. We show the average, minimum,
and maximum improvements across all workloads for all cache
sizes, across 1.33GHz, 2.80GHz, and 4.00GHz operating frequency.
Benefits are higher on an in-order versus out-of-order processor.

we quantified performance on the baselines presented in V.
Second, we measured the area overhead of SEESAW (i.e.,
TFTs, additional cache circuitry, etc.) and added this area to
the L1 cache in the baseline (i.e., it does not perform support
SEESAW). Third we quantified the performance of SEESAW.
The objective of the second experiment was to make sure
that the area spent on SEESAW was worth it; i.e., we would
not have been better off simply making the baseline L1
cache bigger. We found that the second scenario improved
performance over the baseline by less than 0.01% in all cases.
We therefore ignore these results for the remainder of this
evaluation, focusing on SEESAW instead.

Fig. 7 shows performance improvements on an out-of-order
processor as we vary cache size, for a fixed 1.33GHz clock.
Every single one of our workloads benefits from SEESAW,
despite the fact that the variable-hit-latencies can create some
amount of instruction squashing and rescheduling. Generally,

Table III: L1 Cache Configurations.

Access Latency (cycles)
Cache VIPT Fre- L1 L1
Size Assoc- quency TFT base- super-
(kB) iativity (GHz) page page
32 8 1.33 1 2 1
32 8 2.80 1 4 2
32 8 4.00 1 5 3
64 16 1.33 1 5 1
64 16 2.80 1 9 2
64 16 4.00 1 13 3
128 32 1.33 1 14 2
128 32 2.80 1 30 3
128 32 4.00 1 42 4
£ 210
L >
28 s bl
%0 OIno
—
o @28 222 222 0ooo
g_-’] ~N S N S| ~N S
PRY-IR N oo o vl
— — —
1.33GHz | 2.80GHz 4.00GHz

Figure 10: Percent improvements in the energy spent on the entire
memory hierarchy using SEESAW compared to a baseline VIPT.
We separate in-order (InO) and out-of-order (OOO) results.

the larger the cache, the more the performance improvement
since baseline VIPT becomes even more highly-associative
and slow in these cases. Average performance improvements
range from 5-11% for 32-128KB caches. Furthermore, these
benefits are particularly notable for emerging cloud workloads
like redis, olio, tunkrank, and mongoDB. Furthermore, Fig. §
shows that these performance benefits can increase with
higher clock frequency as the number of cycles taken for the
baseline VIPT grows in these cases.

Fig. 9 shows that these performance benefits are even
higher on in-order cores. This makes sense, since L1 cache
access latency cannot be overlapped with useful work via out-
of-order techniques. Hence, SEESAW achieves 3-5% higher
performance on in-order cores versus out-of-order cores.

B. Energy

Fig. 10 quantifies SEESAW’s energy benefits. We plot
average, minimum, and maximum percent improvements
while varying cache sizes from 32KB to 128KB, and
frequencies from 1.33GHz to 4.00GHz. Note that we focus
on the energy expended on the entire memory hierarchy
(rather than just the L1 cache), since changes to L1 cache

CPU-side [Coherence

O
100
80
60
40
20
0
g2¢
258
[S]

Figure 11: Percent of the energy savings that can be attributed
to savings in CPU-side lookups versus coherence lookups. Results
are collected on an out-of-order system with 64KB L1 caches at
1.33GHz.

Percent of Energy
Savings

redis ——— T]
mongo T]

hit rates can affect access rates and energy of the bigger
caches and memory. We separate results for in-order and
out-of-order processors.

Fig. 10 SEESAW always improves the energy spent on
the memory hierarchy. Generally, in-order processors save
slightly more energy, but out-of-order processors do well too.
Energy savings come from a variety of sources. Workloads
whose memory footprints fit comfortably in the L1 cache (e.g.,
the Spec applications) benefit mostly from savings in dynamic
access energy from SEESAW. Other workloads with larger
working sets, like Redis, MongoDB, and Olio benefit from
both dynamic access energy and decreased leakage energy
because the application runs faster. Energy savings can be
attributed to both savings in CPU-side accesses as well as
coherence lookups. Fig. 11 showcases the fraction of energy
savings that are attributed to savings from CPU-side lookups
versus coherence lookups. We show per-workload results for
64KB caches at 1.33GHz for the out-of-order system but
these trends remain the same for other organizations.

Fig. 11 shows that all applications, whether they are single-
or multi-threaded, benefit from more energy-efficient CPU-
side lookups but also coherence lookups. For example, over
10% of the energy savings of applications like astar and mcf
are from coherence lookups. This is because our simulation
framework also captures cache coherence from not just the
application, but also system-level activity (e.g., the OS, the
network stack, etc.) that can exercise the coherence protocol.
Naturally, coherence savings become even more important
for multi-threaded applications. Roughly a third of the energy
benefits of workloads like canneal and tunkrank come from
energy-efficient coherence lookups. Note, furthermore, that
these results are collected using a directory-based cache
coherence protocol, where the coherence directory eliminates
many spurious L1 cache coherence lookups. We have also
experimented with snoopy coherence protocols and find that
in many cases, energy improvements can increase by an
additional 2-5% in multi-threaded applications.

OPerf CEnergy

Juny

oOwo wuN

mh0 4
mh30 E=—
mh 60 =

mhQ ="
mh30 =

mh 60

Percent Improvement

olio | redis | nutch | tunk | g500 mongo | cann | mcf

Figure 12: We vary memory fragmentation using memhog, which
uses 0%, 30%, and 60% of memory. We show percent performance
and energy savings on the memory hierarchy by using SEESAW.

20 OL1 hitsavg [IL1 misses avg
15
10

5

32k F—
64KB =
128KB %
32kB .
64KB [T,
128kB =+
328 [F—,
64KB [T,
128kB [P

12-entry TFT 16-entry TFT 20-entry TFT

Figure 13: Percentage of superpage accesses that are missed by
the TFT, for varying TFT size (12- to 20-entry) and cache size
(32KB, 64KB, 128KB). Results are separated for TFT misses for
accesses that hit and miss in the data cache. Average, min, and max
results shown.

C. Effect of Memory Fragmentation

We have also studied SEESAW’s benefits as load is stressed
further, making it even harder for OSes to allocate superpages.
While the results presented thus far are already on a system
with significant load and uptime, Fig. 12 shows what happens
when load is exacerbated. These experiments focus on 64KB
L1 caches at 1.33GHz. While we focus on five important
cloud workloads, we see the same trends for our other
workloads too. For each workload, we vary fragmentation
levels by running, like prior work [5, 22, 30, 31], a memory-
intensive microbenchmark (i.e., memhog), giving it 0%, 30%,
and 60% of the total memory capacity. The more memory
given to memhog, the more challenging it is for Linux to
allocate superpages. For example, Olio and Redis see over
80%, 72-76%, and 48-52% of their memory footprint covered
by superpages when giving memhog 0%, 30%, and 60%
of the total memory area. Despite this, however, SEESAW
continues to provide energy benefits even as the number of
superpages decreases. As expected, the raw performance and
energy benefits decrease but still remain in the 4-6% range in
the presence of heavy fragmentation (i.e., memhog of 60%).
In other words, OS support for superpages has improved
sufficiently that even under high memory load, there are
ample superpages allocated for SEESAW to be useful.

*ch 12 O Others [JSEESAW

§s

(<]

g0

; [> Q > [>
8 2 2 2 ® 2 ®
S © Q] o &]
€ £ S £ b £]
I L L £

& g 3]

128KB at 4GHz 128KB at 2.80GHz 128KB at

Figure 14: Performance and energy benefits as %%Ecentage of
the baseline configuration for SEESAW versus other approaches
(e.g., PIPT with varying associativity, varying TLB sizes, etc.)

D. TFT Analysis

TFT hit rates are critical to the success of SEESAW. The
key metric to measure is the fraction of cache accesses to
superpage regions that the TFT does not identify as superpage
accesses. These are the only situations where SEESAW looks
up more partitions (and ways) in the data cache than it needs
to. Figure 13 quantifies this metric by showing the percentage
of total superpage accesses missed by the TFT. We vary
TFT size from 12- to 20-entry, and show data cache sizes
changing from 32KB-128KB. Furthermore, we separate the
TFT misses into situations where the memory reference is
ultimately discovered in the data cache (the blue bars or L1
hits) and those that miss (the red bars or L1 misses).

As shown, a TFT size of 16-entry drives miss rates to under
10% even in the worst case. Beyond this, a 20-entry TFT
does not yield much better prediction rates (and although
not shown, this slightly higher prediction rate yields less
than 0.1% additional performance). This is why we settle
on a 16-entry TFT. Furthermore, Figure 13 shows that by
far, the bulk of the TFT misses occur to superpage accesses
that actually miss in the L1 cache. This means that even
though we pay the penalty of the additional partition access
in SEESAW, this additional latency pales in comparison to
the subsequent L2 cache lookup (and beyond). Consequently,
most of these misses do not adversely impact performance.

E. Scaling L1 Caches

When we presented the configurations in Table III, we
found that as we scale L1 caches, baseline VIPT approaches
had unacceptably high access latencies; e.g., Baseline cache
access latencies for 128KB caches at 1.33GHz, 2.80GHz,
and 4.00GHz were 14, 30, and 42 cycles respectively. While
SEESAW does improve the performance of these approaches
substantially, one might imagine other ways to do so too;
e.g., changing the cache from VIPT to PIPT and reducing
any combination of associativity or TLB size to save access
latency. We have swept through a range of such design
parameters (i.e., a range of PIPT associativities and TLB

sizes) and compare our results to SEESAW in Figure 14.

We separate performance and energy benefits of the two
approaches (showing average and min/max with the error

OwWP [OSEESAW [WP+SEESAW

Perf—

Energy
Perf—

Energy
Perf 5

Energy

Perf

Energy

Perf 5

Energy i
Perf—

Energy %

35
-6

-9
-12 - olio |redis nutch| tunk | g500 mongo cann mcf

Energy

Percent Improvement
o w o v
perf
Energy E

Figure 15: Performance and energy improvements, versus a
baseline 64KB VIPT cache at 1.33GHz. We show way-predictor
data (WP), SEESAW and a combined approach (WP+SEESAW).

bars). SEESAW consistently outperforms these approaches
because it strikes a balance — it can accommodate higher
cache associativity (eking out slightly better cache hit rates)
while achieving similar cache access latency as these other
approaches. Moreover it does so without shrinking TLB
sizes (which reduces TLB hit rates), which other approaches
frequently need to do. Consequently, SEESAW achieves both
better performance and energy savings than these other
approaches.

FE. Impact of Way Prediction

We also quantify SEESAW’s relationship with way-
prediction strategies. We have studied 32KB-128KB caches
on an out-of-order processor at our three target frequencies.
Because trends are similar, we focus on 64KB caches at
1.33GHz for this discussion. Fig. 15 compares the percent
performance and energy improvements that an MRU-based
way predictor based on prior work [33] achieves, compared to
SEESAW. We also consider the case where the way-predictor
and SEESAW are combined (WP+SEESAW). All results are
normalized to a baseline VIPT L1 cache. Furthermore,
because of a lack of space, we show results for five of
our cloud workloads, although the trends hold across the
other workloads too.

Fig. 15 shows that, as expected, the way predictor alone
degrades performance. This is expected since way-prediction
trades access latency for better performance. When prediction
accuracy is good (e.g., for nutch which has prediction
accuracy over 85%), performance degradation is marginal.
But when MRU prediction suffers because workloads use
pointer-chasing memory access patterns with poorer access
locality (e.g., graph500 and olio), way prediction can increase
runtime significantly. In contrast, SEESAW never degrades
performance. At worst, it maintains baseline performance in
the absence of superpages. Far more commonly (as Fig. 15
shows), performance improves.

Second, way-prediction can improve energy. However,
SEESAW typically saves even more energy since superpages
are ample. The best energy savings are achieved when it
is combined with way-prediction. We have found this trend
to be consistent across all the workloads. The key is that

SEESAW is able to counteract latency overheads when the
way-predictor mispredicts. It also achieves energy savings in
these cases, when the access is to a superpage. We intend
studying advanced schemes that dynamically choose when
to combine SEESAW and way-prediction, in future work.

VII. RELATED WORK

Perhaps closest in spirit to our work is recent work on
speculatively-indexed physically-tagged (SIPT) caches [42].
Like our study, this work shows that VIPT constraints force
designers to grow L1 caches by increasing associativity,
which can hurt access time and energy. Unlike our work,
the authors of the SIPT paper approach this problem
by speculating/predicting which bits in memory addresses
remain in the same in virtual and physical addresses. We
view this approach as related — however, the reliance on
speculation and rollback mechanisms presents a separate set
of design challenges than our work.

VIVT caches [1, 2, 8, 11, 43] are an alternative to VIPT,

obviating the need for TLB lookup before L1 cache access.

While VIVT caches are attractive because they decouple the
TLB and L1 cache, they are hard to implement of problems
with synonyms, multi-processing, context switches, and
interactions with cache coherence protocols which operate
on physical addresses. Recent work does present effective
solutions to the problems of synonyms [1, 8] and cache
coherence [43], but requires non-trivial modifications to L1
cache and datapath design. Opportunistic virtual caching [7]
proposes an L1 cache design that caches some lines with
virtual addresses, and others (belonging to synonym virtual
pages) as physical addresses.

VIII. CONCLUSION

L1 caches are critical for system performance as they
service every cacheable memory access from the CPU and
coherence lookups from the memory hierarchy. L1 caches
desire fast lookups, low access energy, high hit rates, and
simplicity of implementation. In this work, we identify the
opportunity presented by superpages, to optimize current
VIPT L1 caches. Our design, SEESAW, provides performance
improvements, and energy reduction for all L1 lookups,

whether they are initiated by the CPU or coherence activity.

IX. ACKNOWLEDGEMENTS

We thank the National Science Foundation, which partially

supported this work through grants 1253700 and 1337147.

We thank Jan Vesely, Zi Yan, Guilherme Cox, and Gabriel
Loh for their feedback on this work.

REFERENCES

[1] C. Park et al., “Efficient synonym filtering and scalable
delayed translation for hybrid virtual caching,” in ISCA,
June, 2016.

[2] B. Jacob, “Segmented addressing solves the virtual
cache synonym problem,” in Technical Report UMD-
SCA-1997-01 December, 1997, 1997.

[3] P. Mishra et al., “A study of out-of-order completion
for the mips r10k superscalar processor,” in Technical
Report, UC Irvine, 01-06, 2001.

[4] B. Pham et al., “Tlb shootdown mitigation for low-
power many-core servers with 11 virtual caches,” in
Computer Architecture Letters (CAL), 2017.

[5] ——, “Large pages and lightweight memory manage-
ment in virtualized environments: Can you have it both
ways?” in MICRO, 2015.

[6] V. Seshadri et al., “Page overlays: An enhanced virtual
memory framework to enable fine-grained memory
management,” in ISCA, 2016.

[7] A. Basu et al., “Reducing memory reference energy
with opportunistic virtual caching,” in ISCA, 2012.

[8] H. Yoon and G. S. Sohi, “Revisiting virtual 11 caches:
A practical design using dynamic synonym remapping,”
in HPCA, 2016.

[9] W. Wang et al., “Organization and performance of a
two-level virtual-real cache hierarchy,” in ISCA, June,
1989.

[10] D. Wood et al.,, “An in-cache address translation
mechanism,” in ISCA, 1986.

[11] A. Hsia et al., “Energy-efficient synonym data detection
and consistency for virtual cache,” in Microprocessors
and microsystems, 2016.

[12] X. Qiu and M. Dubois, “The synonym lookaside buffer:
A solution to the synonym problem in virtual caches,”’
in IEEE Transactions on Computers, 2008.

[13] A. Arcangeli, “Transparent hugepage support,” in High
Performance Computing track San Francisco, CA, 2011.

[14] J. Navarro et al., “Practical, transparent operating
system support for superpages,” in OSDI, 2002.

[15] Y. Kwon et al., “Coordinated and efficient huge page
management with ingens,” in ISOSDI, 2016.

[16] J. Navarro et al., “Practical, transparent operating
system support for superpages,” in Operating Systems
Review (ACM), 2002.

[17] A.Basu et al., “Efficient virtual memory for big memory
servers,” in ISCA, 2013.

[18] Intel 64 and IA-32 Architectures Optimization Reference
Manual, June, 2016.

[19] M. Talluri and M. D. Hill, “Surpassing the tlb perfor-
mance of superpages with less operating system support,”’
ACM SIGPLAN Notices, 1994.

[20] F. Gaud et al., “Large pages may be harmful on numa
systems,” in USENIX ATC, 2014.

[21] A. Bhattacharjee, “Translation-triggered prefetching,”
in ASPLOS, 2017.

[22] G. Cox and A. Bhattacharjee, “Efficient address trans-
lation for architectures with multiple page sizes,” in
ASPLOS, 2017.

[23] E. Witchel et al., “Mondrian memory protection,” in
ASPLOS, 2002.

[24] X. Dong et al., “Shared address translation revisited,”
in Proceedings of EuroSys, 2016.

[25] M. Papadopoulou et al., “Prediction-based superpage-
friendly tlb designs,” in HPCA, 2015.

[26] Synopsys, “DesignWare IP Embedded Memory for
TSMC 28-nm,” https://www.synopsys.com/dw/doc.php/
ds/es/DW-28-nm-DS.pdf.

[27] J. Hennessy and D. Patterson, “Computer architecture:
A quantitative approach,” in Morgan Kauffiman, 2012.

[28] N. Muralimanohar et al., “Cacti 6.0: A tool to model
large caches,” in HP Laboratories, 2009.

[29] Intel, “Intel sandybridge, ivybridge, haswell, skylake,
http://www.7-cpu.com/cpu/SandyBridge.html.

[30] B. Pham et al., “Colt: Coalesced large-reach tlbs,” in
MICRO, 2012.

[31] ——, “Increasing tlb reach by exploiting clustering in
page translations,” in HPCA, 2014.

[32] D. Sanchez and C. Kozyrakis, “Vantage: Scalable and
efficient cache partitioning,” in ISCA, 2011.

[33] M. Powell et al., “Reducing set-associative cache energy
via way-prediction and selective direct-mapping,” in
ISCA, 2001.

[34] F. Sleiman et al., “Embedded way prediction for last-

29

level caches,” in ICCD, 2012.

[35] “Wind river simics,” https://www.windriver.com/
products/simics/.

[36] D. Chinnery and K. Keutzer, Closing the gap be-
tween ASIC & custom: tools and techniques for high-
performance ASIC design. Springer Science & Busi-
ness Media, 2002.

[37] M. Ferdman et al., “Clearing the clouds: A study of
emerging scale-out workloads on modern hardware,” in
ASPLOS, 2012.

[38] L. Wang et al., “Bigdatabench: A big data benchmark
suite from internet services,” in HPCA, 2014.

[39] J. L. Henning, “Spec cpu2006 benchmark descriptions,
ACM SIGARCH Computer Architecture News, 2006.

[40] C. Bienia et al., “The parsec benchmark suite: char-
acterization and architectural implications,” in PACT,
2008.

[41] C. Luk er al., “Pin: Building customized program
analysis tools with dynamic instrumentation,” in CPLDI,
2005.

[42] Z. Tianhao et al., “Sipt: Speculatively indexed, physi-
cally tagged caches,” in HPCA, 2018.

[43] S. Kaxiras and A. Ros, “A new perspective for efficient
virtual-cache coherence,” in ISCA, 2013.

0l

https://www.synopsys.com/dw/doc.php/ds/es/DW-28-nm-DS.pdf
https://www.synopsys.com/dw/doc.php/ds/es/DW-28-nm-DS.pdf
http://www.7-cpu.com/cpu/SandyBridge.html
https://www.windriver.com/products/simics/
https://www.windriver.com/products/simics/

	Introduction
	Background
	TLB and L1 Cache Interface
	System Support for Superpages

	Motivation
	Impact of Associativity on MPKI
	Impact of Associativity on Latency/Energy
	Superpages in Modern Systems

	SEESAW Microarchitecture
	Hardware Augmentations
	L1 cache microarchitecture
	TLB-L1 cache interface
	Relationship with Way-Partitioning
	Implementation Overheads

	Design Optimizations
	Cache Line Insertion Policy
	Relationship with Way-Prediction
	Instruction Scheduling Issues
	Scalability

	System-Level Issues
	Cache coherence
	Page table modifications
	TFT Process IDs

	Methodology
	Evaluation
	Performance
	Energy
	Effect of Memory Fragmentation
	TFT Analysis
	Scaling L1 Caches
	Impact of Way Prediction

	Related Work
	Conclusion
	Acknowledgements

