
Lightweight Emulation of Virtual Channels using Swaps
Mayank Parasar

Georgia Institute of Technology
Atlanta, Georgia

mparasar3@gatech.edu

Tushar Krishna
Georgia Institute of Technology

Atlanta, Georgia
tushar@ece.gatech.edu

ABSTRACT
Virtual Channels (VCs) are a fundamental design feature across
networks, both on-chip and off-chip. They provide two key benefits
- deadlock avoidance and head-of-line (HoL) blocking mitigation.
However, VCs increase the router critical path, and add significant
area and power overheads compared to simple wormhole routers.
This is especially challenging in the era of energy-constrained
many-core chips.

The number of VCs required for deadlock avoidance is unavoid-
able, but those required for mitigating HoL depend on runtime
factors such as the distribution and size of single and multi-flit
packets, and their intended destinations. In some cases more VCs
are beneficial, while in others they may actually harm performance,
as we demonstrate. In this work, we provide a low-cost micro-
architectural technique to emulate the HoL mitigation behavior
of VCs inside routers, without requiring the expensive data path
or control path (vc state and vc allocation) for VCs. We augment
wormhole routers with the ability to do an in-place swap of blocked
packets to the head of the queue. Our design (SwapNoC) can oper-
ate at low area and power specs like wormhole designs, without
incurring their HoL challenges.

1 INTRODUCTION
Networks-on-Chip (NoCs) are prevalent across manycore CMPs
and SoCs today. NoCs need to provide a delicate balance between
meeting application’s communication latency and throughput de-
mands, while consuming as little real estate in terms of area and
power as possible. NoC power continues to remain a concern [11]
in the many-core era.

Wormhole routers are the simplest routers and use a simple
queue at every input port. The challenge with wormhole routers,
however, is head-of-line (HOL) blocking. Fig. 1(a) shows an example.
The brown packet which wants to go east is blocked by the yellow
packet that wants to go south, due to congestion at the south output
port.

To avoid HOL, the standard technique is to use Virtual Channels
(VCs). VCs are like lanes on a highway, that can allow packets using
different output ports to not get blocked by each other. Fig. 1(b)
shows that VCs allow the brown packet to traverse to its destination
without getting blocked. VCs are prevalent across commercial and
research NoCs [3, 4] today1.
The challenge with VCs, however, is three-fold:

1This work targets the performance enhancement (HoL mitigation) aspect of VCs.
Some VCs would still be required for avoiding protocol or routing deadlocks.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
NoCArc’17, October 14, 2017, Cambridge, MA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5542-1/17/10. . . $15.00
https://doi.org/10.1145/3139540.3139541

Latency. Flits need to knowwhich VC to sit in when arriving at a
router, and require a VC allocation step [3]. More the number of VCs,
the larger is the critical path for this step. Most VC routers require
at least 2-3 cycles even in the most state-of-the-art designs [3]. VCs
also add significant area and power overheads.

Area and Power. Fig. 2 plots the area and power requirements
of a wormhole, SwapNoC (this work) and VC routers, as a function
of increasing number of buffer slots. We implemented all three
designs in RTL, and the numbers are from synthesis using Nangate
15nm FreePDK [7]. We can see that the VC area and power grows
to more than 2× that of wormhole as the number of buffer slots
go up. The reason is that VCs are often implemented as multiple
independent FIFOs, each with its associated state, and muxes to
write to and read from one of these FIFOs. Alternate organizations
with trade-offs are discussed in Section 2.

Traffic-dependent performance.Weperformed a design-space
exploration by stressing a NoC with myriad synthetic traffic pat-
terns, and observed the low-load latency and saturation throughput
across wormhole and VC-based designs. For a fair comparison, we
assumed N buffer slots at each input port, which could either all go
into one N-deep wormhole FIFO, or shallow VCs (N VCs, each 1-flit
deep) or deep VCs (N/2 2-flit deep VCs, N/4 4-flit deep VCs and so
on). Fig. 3 plots the distribution of latency and throughput across
the designs and patterns, normalized to a wormhole NoC for each
traffic pattern. We notice that single-flit packets favor shallow VC
designs for throughput, while multi-flit packets favor wormhole
NoCs for throughput. Moreover, wormhole NoCs always provide
lower latency due to simpler routers.

These 3 observations should make us re-think the cost-benefit
of VCs in many-core NoCs. In this work, we propose an alternate
light-weight technique to reduce HoL, without requiring VCs. We
identify that a blocked flit in a queue can in principle swap with the
one at the head of the queue. This is possible in hardware because
of the cyclic shift-register behavior, as Fig. 4(b) shows. A cyclic
shift-register can allow the bits at the output of two latches to get
swapped at the clock edge, without requiring another temporary
latch. This is unlike the software notion of swap where a temporary
buffer is required for a swap. Leveraging this principle, we allow
HOL blocked flits that can leave the router to swap to the head
of the queue and proceed. We enhance wormhole routers with
this feature, and call our design the SwapNoC. Fig. 1(c) shows how
the blocked packet can swap to the head and can traverse to its
destination without getting blocked.

SwapNoC can provide the latency, power and area benefits of
wormhole NoCs, and emulate the throughput benefits of VCs. The
neat feature of our design is that it can adapt to both single and
multi-flit packets, without requiring explicit VCs partitioned into a
pool of shallow and deep queues, which can add performance loss
when done at design time [2, 13] and add complexity when done
dynamically at runtime.

Compared to wormhole and VC baselines, SwapNoC demon-
strates up to a 3.7× reduction in latency, and 70%-95% improvement
in throughput across synthetic and real workloads. It has 2× lower

https://doi.org/10.1145/3139540.3139541

NoCArc’17, October 14, 2017, Cambridge, MA, USA Mayank Parasar and Tushar Krishna

Wormhole SwapNoCVirtual Channel

Congestion CongestionCongestion

Vitrual Channel
solves “Head of
line blocking” by

providing
separate queues

Incoming
packet: Swaps
with the head of

queue

W->E

Incoming
packet: Head of

line blocking

Head of line
blocking restricts

the movement
of the flit at the

back of the queue
even if slots are

available

Incoming
Packet:
Free to
leave

towards
East

W->E

W->E

Incoming
Packet: Free

to move
leave to

East

Figure 1: Wormhole vs. Virtual Channels vs. SwapNoC

0
20000
40000
60000
80000

100000

2 4 6 8 10 12 14 16

Ar
ea
	(u
m
2)

Number	of Buffer	Slots

Area

0
20
40
60
80

2 4 6 8 10 12 14 16

Po
w
er
	(m

W
)

Number	of	Buffer	Slots

Power

0

20

40

60

80

100

2 4 6 8 10 12 14 16

Po
w
er
	(m

W
)

Number	of	Buffer	Slots

Wormhole SwapNoC VC	Router

Figure 2: Router Area and Power as a function of buffer slots

0

0.1

0.2

0.3

0.4

0.5

0.6

0 20 40 60 80

Pe
ak
	T
hr
ou
gh
pu
t	

(p
ac
ke
ts
/n
od
e/
cy
cl
e)

Latency	(cycles)
0

0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25Pe
ak
	T
hr
ou
gh
pu
t	

(p
ac
ke
ts
/n
od
e/
cy
cl
e)

Latency	(cycles)

vc_deep vc_shallow wormhole

0
0.1
0.2
0.3
0.4
0.5
0.6

0 5 10 15 20 25

Pe
ak
	T
hr
ou
gh
pu
t	

(p
ac
ke
ts
/n
od
e/
cy
cle

)

Latency	(cycles)

Multi-Flit Packets
Single-Flit Packets

Figure 3: Performance of Wormhole vs. VC-based Designs.

area and 2× lower power than traditional VC based routers, and
adds less than 1% power and 8% area overhead over a wormhole
router.

Sec. 2 discusses related work. Sect. 3 presents the microarchitec-
ture. Sec. 4 shows evaluations, and Sec. 5 concludes.

2 BACKGROUND AND RELATEDWORK
2.1 Flow Control Techniques
To transmit messages within network, usually one of the follow-
ing five flow control techniques are used, with increasing order of
complexity:

Circuit Switching. The whole path for the transmission is
blocked until the packet is transmitted. Since this leads to poor
link bandwidth utilization, it is not preferred in NoCs.

Packet-switchingwith Store-and-Forward. Packet are stored
completely in each router and only allowed to leave once the entire
packet has arrived.

Packet-switching with Virtual cut-through (VCT). Packets
are allowed to go to the downstream router as soon as an output
channel is free. The buffer and link allocation is still done on a
packet basis.

Packet-switching with Wormhole. This is similar to VCT, as
the links is still allocated on a per packet basis. However, buffers at
routers can be smaller than the size of the packet. Thus buffering is
done on a flit basis. Therefore this design can work on routers with
fewer buffers.

Head-of-Line Blocking. Despite obvious benefits of lesser buffer-
ing compared to other packet-switched techniques, wormhole rout-
ing suffers from Head-of-Line (HoL) blocking. Consider the case
where a tail flit of certain packet is blocked at the head of the

queue because the requested output channel for that flit is not free
due to congestion. Even if the desired outports of the flits of the
packets waiting behind the blocked flit are free, they cannot leave.
This is called Head-of-Line (HoL) blocking. As this phenomenon is
unpredictable, it can leads to performance degradation.

Packet-switchingwithVirtualChannels (VCs).VCs reduces
HOL, as Fig. 1(b) demonstrates, by assigning separate queues for
different packets. Lots of shallow VCs are better at heavy traffic;
multiple deep VCs are better when there is low traffic and each
packet has multiple flits. The VC queues are typically partitioned
in a static manner during design time. VC-based flow control is one
of the most prevalent flow control techniques in use today, and has
been used across NoC prototypes [3, 4].

2.2 Buffer Management
In an on-chip scenario, wires are often abundant while real-estate
for buffers is expensive. There has thus been a lot of prior work
that tries to optimize for efficient usage of buffers - either for per-
formance or for energy-efficiency.

Low-Cost Buffers. One class of solutions has focused on re-
ducing the cost of VC buffers. These span from using bufferless
routers [8] to intelligent bypassing of router pipeline [6, 9] to using
multiple physical networks [14]. Elastic buffers [12] can also help
reduce buffer area and power. These techniques are complemen-
tary to our approach and can augment it to reduce area and power
further.

Dynamic VC Partitioning. The works most related to ours
fall within the category of dynamic VC partitioning [2, 10, 13].
DAMQ [13] was one of the early works in this space that advocated
for organizing the available buffers in the form of a linked list,
allowing flits of a packet to dynamically allocate one to all of the
slots at that input port. Follow-up research has tried to efficiently
utilize the buffers for higher throughput [10] by emulating output
buffered routers while operating the router at considerable fre-
quencies. ViChaR [2] implements a Unified Buffer Structure (UBS)
at each input port, controlled by a Unified Control Logic (UCL)
structure, that dynamically maps flits to a given virtual channel to
maximize buffer utilization.

In these designs, the router controls each buffer slot individually
to dynamically create shallow VCs or deep VCs. The challenge is
that full flexibility requires the router to pay the control overhead of
N VCs if there are N buffer slots at each input port to allow each
buffer to act as its own VC and get direct access to the switch if
required. This incurs overheads both in terms of complexity, and

Lightweight Emulation of Virtual Channels using Swaps
NoCArc’17, October 14, 2017, Cambridge, MA, USA

Swap Swap

Incoming flit
!(Swap)

Qhead

0

1 0

1
0

1

N
E

S
W

Qtail

5
threshold (config.)

clk
Shift Register

(b)(a)

queue_occupancy
Qhead.outport

incoming_pkt.outport

Swap_
Policy Swap

5

E
N
N
W
E
N
N Qhead

Qtail N
N
N
W
E
N
E Qhead

Qtail

outports: Before Swap
wormhole

outports: After Swap
tail_swap

E
N
N
N
E
N
W Qhead

Qtail

swap_disable

threshold

outports: After Swap
intel_swap

1

2

1

W

E

swap_enable

tail_swap = (Qhead_blk) &&
 (Qhead.outport != incoming_flit.outport) &&
 (occupancy >= threshold)

intel_swap = (Qhead_blk) &&
 (occupancy >= threshold) &&
 (Qhead.outport !=scan_queue()->pkt.outport)

Figure 4: Swap NoCMicroarchitecture. For illustration purposes, we show the swap for a single flit packet. Presented above is an example of
tail_swap and intel_swap policies. Suppose the North output port is blocked. tail_swap enables the packet going East at Qtail to swap with the
one at Qhead going North (Step 1). With intel_swap, a scan of the queue results first in the flit at location Qhead+3 (i.e., outport West) getting
swapped with Qhead (Step 1), and subsequently, if West is also blocked, this gets swapped with the flit at Qtail going East. intel_swap enables
more number of swaps.

in terms of area and power. Our work, in contrast does the exact
opposite. Rather than using individual buffer slots to dynamically
construct VCs, we use a single FIFO and enable it to “act" like
multiple VCs by swapping blocked packets dynamically to the head
of the queue.
3 THE SWAPNOC

Wormhole routers have two key bottlenecks: (1) HoL blocking
at the input port, and (2) losing arbitration for the switch output
port due to flits at other input ports contending for the same output
port. VCs directly address (1) since each input port has multiple
candidates to choose from, not just one. VCs indirectly address (2) as
well since VCs provide multiple choices to the switch allocator (SA)
which can then try to find the best possible match between input
requests and available output ports. However, VCs add tremendous
area and power overheads as we have motivated so far. Moreover,
designing a switch allocator that does a good matching is a NP-
hard problem [5] and most hardware implementations use a simpler
separable allocator [5] which independently arbitrates for input
and output ports and cannot address (2).

We make a case for solving HoL by a much simpler solution -
allow the blocked flit/packet to perform an in-place swap with the
head of the queue. We also present policies that help mitigate the
output port arbitration challenge.
3.1 Microarchitecture
The fundamental rule in digital hardware design that is used exten-
sively for building state machines is as follows - if multiple flip flops
are connected to each other in series, at the rising edge of the clock
all inputs move forward by one in parallel without clobbering the
old values2. For instance, in the circular shift register in Fig. 4(b), at
each clock edge, the blue and red signals can keep swapping with

2Clock synthesis by CAD tools ensures this behavior for correct operation of all
synchronous digital circuits.

each other, without requiring any additional storage for performing
the swap. Leveraging this principle, the microarchitecture of the
SwapNoC router is shown in Fig. 4(a). In this example, we enable
the incoming flit being enqueued at the tail of the queue (Qtail) to
swap with the one at Qhead . We also allow swaps to occur from
intermediate points inside the queue, as we describe later. Swaps
occur at a packet granularity (i.e., if enabled, all flits of a blocked
packet get swapped to Qhead one behind the other), as explained
in Section 3.3.

The swap control signals are setup by a swap policy controller.
Different policies use different metrics to determine whether to
swap or not, which are shown as inputs to the controller in Fig. 4(a).

3.2 Swap Policies
In this work we present 5 policies for swapping. However, our
proposed idea of swapping packets is quite powerful and there can
be a lot more policies. For all the policies, we assume that the flit at
Qhead is unable to leave due to zero credits at its outport. If not, a
swap will not be triggered.

Tail_Swap. In tail_swap we swap the head of the queue with
the incoming packet if the outport of the incoming packet (i.e.,
at Qtail) is different than at Qhead . We trigger tail_swap if the
current queue occupancy is greater than a preset threshold value.
For this policy, we assume lookahead routing [5], i.e., the incoming
packet comes with a specific output port that was computed at
the previous router. If the output port of the incoming packet is
different from that of the packet waiting at Qhead , it becomes the
candidate for swapping. The swap is initiated if the current queue
occupancy is greater than or equal to the threshold.

Intel_Swap. In intel_swap we do not restrict ourselves to swap
Qhead with the incoming (Qtail) packet; instead upon reaching
the threshold intel_swap proactively scans the queue from back to
front to find any packet with outport different than that of its head.

NoCArc’17, October 14, 2017, Cambridge, MA, USA Mayank Parasar and Tushar Krishna

On finding the first packet during scan with different outport than
head, we swap it with Qhead .

Fig. 4 demonstrates the tail_swap and intel_swap policies with
an example. The threshold parameter is only used in the tail_swap
and intel_swap policies, not by the other policies. The implicit
difference between intel_swap policy and tail_swap policy is that
swapping is done more often in intel_swap because after threshold
is reached, there are more candidates (packet with different outport
than Qhead) to choose from as compared to tail_swap.

The cost of scanning can be reduced using a per inport structure
which holds the updated outport of all the packets present in the
queue with their position. This structure will get updated whenever
any packet enqueues, or leaves the queue or get swapped within
the queue.

Credit_Swap. credit_swap is based on the insight that a flit with
zero credits at its output port could get stuck for many cycles since
zero credits is a likely indication of congestion at its downstream
router. If such a flit were to move to the Qhead , it would cause
HoL for other packets. The credit_swap policy is centered around
finding such packets and pushing them to the tail of the queue.

credit_swap keeps track of the credit count at all the outports.
Whenever any of the outport’s credit becomes 0 (which means there
is no buffer space available at the given inport of the downstream
router), it scans the inport queue starting from front till back. During
the scan, if it finds a packet with same outport as the one which
has 0 credit, it swaps it with the tail of the queue. This is done at
all the inports in the router, to make sure the outport which has no
credit has its packets shifted towards the tail of the input queues.
This also helps in reducing network congestion.

Random_Swap. random_swap policy tries to shuffle all the
inport queues periodically. Shuffling is done by choosing a packet
from the queue randomly and swapping it with the head of the
queue. This is a heuristic, but can reduce the effect of HoL blocking
as each packet comes at the head of the queue with equal probability.

Shuffle_Swap. Recall that there could be two reasons that the
flit at Qhead is unable to leave the queue, as discussed before - HoL
blocking or losing SA in the router. shuffle_swap policy also tries to
shuffle all its inport queues periodically like the random_swap pol-
icy. The only difference is that when it selects the candidate packet
to swap with Qhead , it makes sure that the selected packet does
not have the same outport as the one at the head. This make head
of all inport queues randomly distributed, thus not only reducing
the effect of HoL blocking, but also helping increase the chance of
winning the SA.

3.3 Multi-flit Packet Swaps
Full-packet Swap. Swaps nominally occur at a packet granularity
(i.e., if enabled, all flits of a blocked packet get swapped to Qhead
one behind the other). During a full packet swap, all flits of the
packet can be swapped either serially (if there is only one bypass
connection to Qhead) or in parallel if there are multiple connections.
All flits of a packet are swapped in-order, so there is no re-ordering
of flits within a packet.

Since our base design is a wormhole router, we do not allow
partial swaps since the body and tail flits of a packet do not carry
routing information and rely on following the flit right before it.
This is because there is no “VC" to store the per-packet routing
information. All links are allocated on a packet granularity. Swaps
are disallowed under 2 conditions:

(1) If the flit at the Qhead is not a head flit of a packet, then the
swap is not allowed. The reasoning is as follows: if the flit at Qhead
is a body or tail flit, that means that the head flit of this packet
already left the router. This is implemented by setting a head_blk
whenever a head flit reaches Qhead , and resetting it when the tail
flit leaves.

(2) If the queue does not have enough slots to hold the entire
incoming packet, swaps to Qhead are not allowed since part of the
packet would have been swapped to the front, while the remaining
would still be at the previous router waiting for credits.

Flit-level Swap. The two conditions listed above can be relaxed,
i.e., partial swaps can be allowed, if each body and tail flit also
carries the output port (encoded in 3-bits) at this router. The body
and tail flits do not need to carry the full header (which would
essentially make each body and tail flit a packet in itself reducing
effective bandwidth). In such a scenario, the body and tail flits, that
are no longer right behind the head flit, would know which output
port to go out from when they eventually arrive at Qhead again.

This does not break the correctness of the design, as we describe
with an example. Suppose a Packet A is waiting for the East output
port and stalled. The head-flit of Packet B going towards South
gets swapped and moves to the head of the queue and leaves. Now
the East output port becomes free and flits from Packet A start
getting sent out. Since the head of the queue is no longer blocked,
the other flits of Packet B get queued behind Packet A. This is an
acceptable outcome. The goal of the SwapNoC, like VCs, is to ensure
that some flit can leave from an input port and output port every
cycle. While Packet A was stuck, Packet B was allowed to swap
and fulfill this requirement. Once Packet A becomes free, it satisfies
this requirement. At the next router at the East output port, all flits
of Packet A are still going to be together in the correct order.

3.4 Comparison to VCs.
The goal of SwapNoC is to emulate the behavior of VCs, i.e., the
ability for flits to different output ports not get blocked by each
other. To that end, different policies for swaps can emulate different
behaviors. We give an intuition on how we can seamlessly model
VC behavior without any control except the notion of a threshold
and the ability for an input flit to swap with the head of the queue.

How to emulate shallow VCs? If a network has a lot of 1-
flit packets, a small value of threshold can essentially emulate the
behavior of shallow VCs by allowing every new packet going to a
different output port to have the ability to bypass a blocked packet.

How to emulate deep VCs? If a network has a lot of multi-flit
packets, then having a threshold equal to or greater than the size
of the packets can allow new packets to bypass blocked packets.

How is the threshold set? The threshold is meant to be a dy-
namic knob available with the router to tune the swap frequency for
tail_swap and intel_swap based on traffic rate and size of packets. In
our design, we support both a static version and a dynamic version.
In the static version, the threshold is set in the router at reset, based
on offline profiling of traffic. In the dynamic version, the router
monitors the number of failed switch arbitrations and adjusts the
threshold accordingly. When the number of failed arbitrations are
high, the threshold is lowered, else it is raised. We demonstrate the
impact of the threshold in our evaluations.

Adaptive Schemes. Schemes like credit_swap, rand_swap and
shuffle_swap do not need the threshold knob to tune and aggres-
sively try to adapt with traffic.

Lightweight Emulation of Virtual Channels using Swaps
NoCArc’17, October 14, 2017, Cambridge, MA, USA

Table 1: Network Configurations (1-cycle router in each)
Wormhole Wormhole router with a N -flit deep queue.
VC-shallow N 1-flit VCs (max number of VCs).
VC-deep 2 N /2-flit deep and 4 N /4-flit-deep VCs.
SwapNoC N -flit deep queue with Swaps.

Summary. SwapNoC cannot beat VCs cycle-by-cycle in terms
of throughput, since fundamentally it operates on heuristics to get
a non-blocked flit to Qhead while VCs can essentially arbitrate
for and choose the best possible candidate every cycle. But the
SwapNoC has a lower cycle time, and much lower power and area
than VC routers, as we show next. Moreover, as we observe in our
results, static partitioning of VCs actually performs worse than
SwapNoC, especially with large packet sizes.

4 EVALUATION
4.1 Methodology
Our target NoCs are described in Table 1. We equalize the total
buffers (say N) in each router across all designs. All other possible
VC configurations should perform between VC-shallow and VC-
deep which represent two extremes of the design space for VCs. All
routers - wormhole, Swap and VC have a state-of-the-art 1-cycle
pipeline. This is an aggressive assumption for VC routers which
typically take 2+ cycles due to input and output VC arbitrations [3]
that are not required in wormhole and SwapNoC.

We implemented all NoCs in RTL to get pipeline delay, area,
and power results post-synthesis using the 15nm Nangate FreePDK
library [7]. For design-space exploration inside multicores, we used
the gem5 [1] simulator with the Garnet on-chip network model
where we modeled the SwapNoC. We assume a 8×8 mesh in all our
evaluations.

Traffic Patterns.We evaluate our designs across a suite of syn-
thetic and real traffic patterns. We also define two new synthetic
patterns to stress HoLs in the NoC. Tornado_Random_30 is the
traditional Tornado pattern - which always sends traffic halfway
across the mesh in the same dimension without turning, with 30%
of the traffic being random, i.e., may want to turn. Edge_50 sends
50% of the traffic to the rightmost node in the same row as the
source, and 50% to a random destination. The synthetic traffic runs
are done with both single-flit and 5-flit packets, to demonstrate the
impact of our NoCs. We also run full-system simulations with PAR-
SEC benchmarks over a MOESI directory protocol. The protocol
requires 4 virtual networks (request, response, forward, unblock)
for deadlock-avoidance. Data (cacheline) packets are 5-flit, the rest
of the packets are 1-flit. Wormhole and SwapNoC use a single FIFO
within each vnet, while the VC-based designs use 4 VCs within
each vnet.

4.2 Critical Path, Area and Power
RTL synthesis of the SwapNoC router demonstrates that it increases
the critical path over a wormhole router by only 8.4-9.4% across
queue depths from 2 to 16. This is due to the mux that can read a
flit from either the head, or the threshold size depth in the queue.
This overhead was well within the timing slack at 1ns, enabling a
1-cycle operation at 1GHz. The VC router, on the other hand, has a
critical path close to 2ns when N=16.

Fig. 2 shows that the SwapNoC router is 2× smaller in area and
consumes 2× lower power compared to VC routers, as the number
of buffer slots in each port goes up. SwapNoC adds 1% power and
8% area overhead over the wormhole router.3

3We thank Hyoukjun Kwon from Georgia Tech for help with RTL implementation and
synthesis of the Swap NoC

4.3 Performance: Synthetic Traffic
Multi-flit Packets. Fig. 5 evaluates the performance of SwapNoC
across synthetic traffic patterns using 5-flit packets. With multi-flit
packets, the shallow VC design has the highest delay, due to heavy
serialization. At low loads, the flit of each packet needs to wait
for the credit round trip for sending every flit of the packet. At
high loads, more VCs helps push the throughput. Thus this design
has the highest throughput across most patterns. The deep VC
design on the other hand provides much better low-load latency,
and saturates at the same or slightly lower injection rate than the
shallow VC. Wormhole saturates the earliest across all patterns,
which is its key shortcoming.

The SwapNoC policies provide the best low-load latencies, pro-
viding a 61% reduction in latency compared to the shallow VC
design, and 28% lower than the deep-VC design. In terms of through-
put, SwapNoC provides 88.2-87.6-88.1% better throughput than the
VC-based designs for bit_reverse, transpose, and edge_50. With
bit_rotation, shuffle and tornado, the throughput of SwapNoC is
comparable to that of the VC-based designs. For uniform_random,
bit_complement, and tornado_random_30 SwapNoC provides through-
put that is in between that of wormhole and VCs.

tornado is an interesting traffic pattern for the SwapNoC since
traffic never turns, which would seem to imply that there would
never be any HoL blocking. However, there is still HoL blocking
for packets that want to get ejected. This is the reason SwapNoC
actually improves throughput over the wormhole design even for
tornado.
Among the SwapNoC policies, random_swap and intel_swap have
slightly better performance than the others.

In summary, SwapNoC provides the performance of wormhole and
deep VCs at low-loads, and close to or better throughput than shallow
VCs at high loads, essentially modeling a dynamic VC partitioning
design without the overheads of managing each buffer slot indepen-
dently. Single-flit Packets. Fig. 6(a) demonstrates the performance
of SwapNoC with single-flit packets. With single-flit packets, there
are no credit turnaround issues for shallow VCs which provide the
best latency and throughput. As discussed earlier in Section 4.2, VCs
provide much better opportunities for flits going out of unblocked
outports to arbitrate for and leave, compared to the SwapNoCwhich
relies on heuristics to come to the head of the queue. SwapNoC
provides about 15% improvement in throughput over wormhole for
edge_50 and shuffle, and comparable performancewith bit_rotation
and other patterns not shown in the interest of space. SwapNoC
still beats the Deep-VC design in throughput by 40-50% in edge_50
and bit_rotation.

In summary, with single-flit packets, a deep-VC design suffers
tremendously while a shallow VC design performs the best. The Swap-
NoC is an elegant design choice for providing better throughput than
deep VC designs.

Impact of buffer depth and threshold Fig. 6(b) plots the through-
put as a function of the threshold parameter across multiple buffer
depths for the tail_swap policy. For a buffer depth of 4, a threshold
of 3 gives a spike in performance. For depths of 8 and 12, the impact
of threshold is almost negligible. But with a buffer depth of 16, a
threshold of 11-13 gives the best performance.
4.4 Performance: Full-System PARSEC
Fig. 7 demonstrates the full-system performance with PARSEC
benchmarks. For benchmarks such as blackscholes and bodytrack,
SwapNoC provides 12% lower runtime than VCs, primarily due to
the faster router. Its performance is same as that of wormhole as

NoCArc’17, October 14, 2017, Cambridge, MA, USA Mayank Parasar and Tushar Krishna

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
g	P

kt
	La

te
nc
y	(
cy
cle

s)

Packet	Injection	Rate	(packets/node/cycle)

TRANSPOSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032

Av
g	P

kt
	La

te
nc
y	(
cy
cle

s)

Packet	Injection Rate	(packets/node/cycle)

TORNADO_RANDOM_3010
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022Av
g	P

kt	
La
te
nc
y	(
cy
cle

s)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032 0.037

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

UNIFORM_RANDOM
10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_REVERSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027

Av
g	
Pk
t	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

TORNADO

20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
.	P
kt
	La

te
nc
y	(
cy
cle

s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_COMPLEMENT

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

Av
g.
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

10
20
30
40
50
60
70
80
90

100

0.02 0.07 0.12 0.17 0.22Av
er
ag
e	
Pa
ck
et
	L
at
en
cy
	

(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90
100

0.02 0.07 0.12 0.17 0.22Av
er
ag
e	
Pa
ck
et
	L
at
en
cy
	

(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3A
v
e
ra
g
e
	P
a
c
ke
t	
L
a
te
n
c
y
	

(c
y
c
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

(a) (b) (c)

Figure 5: Performance of SwapNoC with multi-flit packets.

10
20
30
40
50
60
70

0.02 0.07 0.12 0.17 0.22A
vg
	P
kt
	L
at
en
cy
	

(c
yc
le
s)

Pkt	Inj	Rate	(pkts/node/cycle)

EDGE_50

10
20
30
40
50
60
70

0.02 0.12 0.22Av
er
ag
e	
Pa
ck
et
	L
at
en
cy
	

(c
yc
le
s)

Pkt	Inj	Rate	(pkts/node/cycle)

SHUFFLE

10
20
30
40
50
60
70

0 0.1 0.2 0.3

A
ve
ra
ge
	P
a
ck
e
t	
La
te
n
cy
	

(c
yc
le
s)

Pkt	Inj	Rate	(pkts/node/cycle)

BIT_ROTATION

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

A
vg
	P
kt
	L
at
en
cy
	(
cy
cl
es
)

Packet	Injection	Rate	(packets/node/cycle)

TRANSPOSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032

A
vg
	P
kt
	L
at
en
cy
	(
cy
cl
es
)

Packet	Injection Rate	(packets/node/cycle)

TORNADO_RANDOM_3010
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022A
vg
	P
kt
	L
at
en
cy
	(
cy
cl
es
)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

A
vg
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027 0.032 0.037

A
vg
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

UNIFORM_RANDOM
10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017

A
vg
	P
kt
	L
at
en
cy
	(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_REVERSE

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022 0.027

A
vg
	P
kt
	L
a
te
n
cy
	(
cy
cl
e
s)

Packet	Injection	Rate	(packets/node/cycle)

TORNADO

20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

A
v.
	P
kt
	L
a
te
n
cy
	(
cy
cl
e
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_COMPLEMENT

10
20
30
40
50
60
70
80
90

0.002 0.007 0.012 0.017 0.022

A
vg
.	P
kt
	L
a
te
n
cy
	(
cy
cl
e
s)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

10
20
30
40
50
60
70
80
90

100

0.02 0.07 0.12 0.17 0.22A
ve
ra
ge
	P
a
ck
e
t	
La
te
n
cy
	

(c
yc
le
s)

Packet	Injection	Rate	(packets/node/cycle)

EDGE_50

10
20
30
40
50
60
70
80
90
100

0.02 0.07 0.12 0.17 0.22A
v
e
ra
g
e
	P
a
c
ke
t	
L
a
te
n
c
y
	

(c
y
c
le
s)

Packet	Injection	Rate	(packets/node/cycle)

SHUFFLE

10

20

30

40

50

60

70

80

90

0 0.05 0.1 0.15 0.2 0.25 0.3A
v
e
r
a
g
e
	P
a
c
k
e
t
	L
a
t
e
n
c
y
	

(c
y
c
le
s
)

Packet	Injection	Rate	(packets/node/cycle)

BIT_ROTATION

(a) (b) (c)

0.025
0.03

0.035
0.04

0.045

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15P
e
a
k
	T
h
ro
u
g
h
p
u
t

Threshold

depth_16 depth_12 depth_8 depth_4

(a) Performance
(b) Sweep of threshold and buffer depth for

tail_swap policy
Figure 6: Performance of SwapNoC with single-flit packets.

0
0.2
0.4
0.6
0.8
1

1.2
1.4

blackscholes bodytrack canneal fluidanimate swaptions

N
or
m
al
ize

d	
Ru

nt
im
e

VC-Deep VC-Shallow Wormhole Tail_Swap
Intel_Swap Credit_Swap Random_Swap Shuffle_Swap

Figure 7: Normalized Full-System Runtime with PARSEC.

there is not enough NoC traffic to cause much HoL blocking. This is
the same reason both deep VC and shallow VC have similar perfor-
mance. With canneal and fluidanimate we see about 5% reduction
in overall runtime with shuffle_swap compared to wormhole. But
in some cases, tail_swap actually results in a drop in performance.
swaptions shows the most dynamic behavior, demonstrating up
to 36% reduction in runtime over both VCs and wormhole with
credit_swap and random_swap.

In summary, for applications with low network traffic, which is
often the case with real workloads, the overheads of VCs is an overkill
for many-core systems. SwapNoC has similar overheads as a worm-
hole router, but can step in to provide higher performance than the
wormhole in case of higher traffic, making it a win-win.
5 CONCLUSIONS
We provide a light-weight technique to mitigate HoL without re-
quiring VCs. Our key novelty is the ability for blocked flits to swap
with the head of the queue in a wormhole router, without any
additional buffers to manage this swap. We add minimal control
overhead to perform this swap, and also describe multiple heuristic

policies for managing when swaps occur. The SwapNoC shows
significant performance, energy, and area benefits over VC-based
router designs. We believe that the idea of leveraging swaps goes
beyond the policies presented in this paper, and can open up a suite
of optimizations for NoC architects and designers.

REFERENCES
[1] N. Binkert et al. 2011. The Gem5 Simulator. SIGARCH Comput. Archit. News

39, 2 (Aug. 2011), 1–7. https://doi.org/10.1145/2024716.2024718
[2] N. Chrysostomos et al. 2006. ViChaR: A dynamic virtual channel regulator for

network-on-chip routers. In MICRO’ 06. IEEE, 333–346.
[3] C. Clauss et al. 2011. Evaluation and improvements of programming models for

the Intel SCC many-core processor. In HPCS.
[4] B. Daya et al. 2014. SCORPIO: a 36-core research chip demonstrating snoopy

coherence on a scalable mesh NoC with in-network ordering. In ISCA.
[5] Natalie Enright Jerger, Tushar Krishna, and Li-Shiuan Peh. 2017. On-chip

Networks. Morgan & Claypool Publishers.
[6] A. Kumar et al. 2007. Express virtual channels: Towards the ideal interconnection

fabric. In ISCA.
[7] M. Martins et al. 2015. Open Cell Library in 15nm FreePDK Technology. In ISPD.

ACM, 171–178.
[8] Thomas Moscibroda and Onur Mutlu. 2009. A case for bufferless routing in

on-chip networks. In ISCA.
[9] A. Psarras et al. 2016. ShortPath: A Network-on-Chip Router with Fine-Grained

Pipeline Bypassing. IEEE Trans. Comput. 65, 10 (2016), 3136–3147.
[10] R. Ramanujam et al. 2010. Design of a high-throughput distributed shared-buffer

NoC router. In NOCS.
[11] A. Samih et al. 2013. Energy-efficient interconnect via Router Parking. In HPCA.
[12] I. Seitanidis et al. 2015. ElastiStore: Flexible elastic buffering for virtual-channel-

based networks on chip. TVLSI 23, 12 (2015), 3015–3028.
[13] Yuval Tamir and Gregory L Frazier. 1988. High-performance multi-queue buffers

for VLSI communications switches. IEEE Computer Society Press.
[14] D.Wentzlaff et al. 2007. On-chip interconnection architecture of the tile processor.

IEEE micro 27, 5 (2007), 15–31.

https://doi.org/10.1145/2024716.2024718

	Abstract
	1 Introduction
	2 Background and Related Work
	2.1 Flow Control Techniques
	2.2 Buffer Management

	3 The SwapNoC
	3.1 Microarchitecture
	3.2 Swap Policies
	3.3 Multi-flit Packet Swaps
	3.4 Comparison to VCs.

	4 Evaluation
	4.1 Methodology
	4.2 Critical Path, Area and Power
	4.3 Performance: Synthetic Traffic
	4.4 Performance: Full-System PARSEC

	5 Conclusions
	References

